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PREFACE

/
-Nbat,of the mathematical techniques-that are in use today were dev loped

to meet practical needs. :.The elemehtary arithmetic operations have obv ous

uses in everyday life, but the mathematical concepts which are introduc a 41

the junior high school level and above are'not as obviously useful.,

The School Mathematics Study'Group has been exploring the podsibi ty

of introducing some of the basic concepts bf mathematics thrOugh the u e of

some simp3,e science experimpts.. Several units were prepared during t e

summer of 1963 and were used on an experimental basis in a number of c ass -,
.

rooms during the folloi;ing year. On the basis of the results of thes= trials,

these units were revised during the summer of 1964.

.

This text is designed to be usable with any mathematics textbook) in common

use. It is not meant to replace the textbook for the course, but to upple:

went it. Previous acquaintance with soienoe on the part of the stud nt is'

,unnecessary. The scientific" principles involved are fairly simple an :,,,are

°exp lained as much as is n'e'dessar in th e text.. Each ekperiment opens a door
4 ..

into a new domain in mathematics! "',linear functions, graphs, translation.of

P axes, the distributive property, and the solutiokof equations. We hope .,

that student learning a nd understandinf will be, improved through the use of

this material!' .3 `'

The experiment.ehave all been don4 in actual cla,sroom situations. ,Eyeryt

effort has been made to make the'direcfions-for the experiments as clear and

simple as z3ss:ible. The apparatus has been kept to a minimum.

The writers sincerely hope that thisapproach to mathematics will prove

both useful and interesting..tothe student,
.
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Chapter °1

OPEN. SENTENCES AND EQUATIONS

i
.. /

. \
1.1 Introduction ,

-421,- 4--7,-,-7-

In this chapter we shall perform an experiment to learn how to solve . ,

problems by experimentation. EVeryone has played on a seesaw at one time or- - .1

another. You know that a small boy sittingatone-end of
,'

A seesaw can balance

a big boywhoCtits closer to the fulcrum, oil theotiiiibide. The fulcrum is

the point'atvhich the seesaw is supported.
- . .

Can you tell exactly how

1
m eh closer to the fulcrum the big boy must sit

to balance the mass of the sae boy at the other end-of the seesaw? Do you

think' that the masses of the boys and their.distanees from the fulcrum are._
s

,related somehow? To be able to answer these questions properly, we must knair,i4

*ore about the seesaw.

In our first experiment, we will set up a miniature seesaw. In observing

how the seesaw operates, we will diecover a rule which will exgain the way it

works, and then try to state this rule in mathematical form.

1.2 The Seesaw Experiment

A simple, model of a seesaw can beconstructed from-a-meter stick, spil.ng

clamp triangular' file and Dixie cups. Make a support.by placing twq

ouncaLDixie cups upside down on a blpck which is about 8 inches long. In

order to be Silte that-the meter stick is supported.atits midpoint, clamp a

spring paper clamp with the 50 cm mark as close to the center of the clamp as

possible. Insert'a 5 -inch triangular file in the hole of the clip so that one

,edge of the file is in the upright pdsition. (lee Figure 1.)

1

1



The cups serte as-a support when the triangular file is lanced across

theft. (See Figuiejo2.)". Tie,stick should settle in a horizontal position. If

it does not, place smalk_pieces_ 0. modeling clay,on the end of the lighter'

Y-''side until It doiesbaia;ce.Iet us agree that the meter stick is balanced

when it comes to rest in a horizontal position. We need some device to
J-

hkai;

.

when'the stick turned tal position after having been

.
--..... i

,mo 1
/

. Figure 2
t

To determine when the stick is horizontal, we shall use two - inch
4.

dowels which are at least 8 inches/long and to chunks pf rdeling clay, -

Stick eachodowel into one of the chunks of clay so that the dowels stand in a

vertical position. (See'Figure 3.). Place one of the upright dowels behind

the balanced meter stick near the'right-hand end of the meter stick..iflace

Figure

the'other upright dowel in,a similar positiOn near the left -hand end of the

,meter stick. Now plape a small pencil mark on each dowel stick so\that the

pencil mark and the top edge of:the meter stick are in a horizontal line of

i0 2
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4
slght. Measure the distance from the table top tethe pencil mark On each

dowel. When these distances are equal, the meter stick is horizontal. Bend

paper clips to serve as hangers for the weights. Open the paper 'clips so

they will'slide easily on the meter stick./"For this part'of the experiment

We shall need'10 grams (2 0157,qs), 20 krams,(2 weights), 50 grams, 100 grams,

200 grams (2 weights).

Begin the experiment by hanging a mass of 20 gm on each side of the ful-

crum 30 crti from the fulcrum. (See Figure 4.) Does the stick balance? Slide

each 20-gm, mass to a position 10 cm from the fulcrum. Does the stick balance

again? Now move each mass to 40 cm from the fulcrum. you. notice that when

werplace objects with equal masses on opposite sidet of the fulcrum at,equal4

distances from it, the stick always 'balances?

50c.;

30 20 30

i 20.9m

30cm

Figure 4

t'

An eXArtmenter may wonder, hoWever, what might happen i1 the masses on -

-eith4r sideofthe fulcrum are not equal. To answer this question keep the

'20-0ahmass at 30 am-from the fulcrum on the left side. Aita4 ch a 30-gm mass
.on the-right side, 30 can from the fulcrum. (See Figure 5.) There is no balance

"..now)Sincethe right side of the stick tips down. Can you eicplain why?

. Now slidswthe 30-gm mass closer to_the fulcrum until,the stick.is
4

bal-
anced. At What"aistave does the mass Of 30 gmbalanp4&the mass of 20 gm

placed 30 'am'from the fulcium? Do you find that the ghaller mass placed

farthei away from the fulcrum balanceg the er mass placed closeD to; the

4 fulcrum?

0

.4...

f,}

Figure 5

1
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Choose two7objeCis with different masses and place one mass on each side

of the fulcrum. Now slide them back and forth until you get a balance. For

instance; use 20 gm on one sideand 50 gm on the other. Did you notice.th4k

no matter what pair of masses you use you an always balance tt stick by

placing the masses at'the right distances from the fulcrum?

Thelm observations lead to the conclusion that hanging objects with

equal masses on,each side of the stick at equal distances from the fulcrum
*

will make the stick balance. Different distance's are heeded to achieye a

balance.when the masses are unequal.

Our purpose is to find a general rule which describes the relationship

between the mass and the distance -from the fulcrum so we can tell in advance

where to place one object of known mass to balance another object of known

mass.,

To establish this relationship, ,further experimentation is needed.

Therefore, perform several trials (experiments in a variety of situations. q;

/
To keep the experiment simple; use the same object (200 gm) in all the, -

trials atqa fixed' distance (6 an) to the right of the fulcum. (See Figure 6.)

Then balance it in turn on the left-hand side wit4:120 gm; 6:11kgm, 36 gm,

40 gm and 200 gm. Slide each object on the left back and forth until the

stick is balanced.

For convenience, let "m" represent the mass of ahy object that is hung"

.on the stick and "d" %he measure of the distance from tafulcTm.
6-

Perform the first trial. Remember we place 200 gm at 6 cm to the right

o the fulcrum. (See Figure 6.) Hang the 120-gm,masis on'he left-hand side.

Slide it back and forth until you find the distance frai the fulcrum at which

the stick balances. Then lead this distance to the nearest cm an4 record it

in the first row of your, table. ''(See Table I.-) 4.

dAkterniio ell. firee,a5iteinee 6co:

./DOgi
oar"

tio/.4,rx;eno 0/0,(0t4

Figure
e
v

,

4.

12
.4

,

7
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Balanced Meter Stick

.

Jett side Right side

Trials

.

. ,

Mass in
grams
m

Distance from
fulcrum-in an '''

d

Massin
grams
m

Distance from
fulcrum in an

d ,

I , .200

4
.

60 200 6

In 30
-

200 :,,6

IV 40 200
...

6

V 80
, ..

200

Table 1
.

In the second trial, keep the 200-gd mass at 6 an from the fulcrum as

was done in th6 first trial, and hang the 60-gm mass on the left side. '60

'. grams is half the mass of 120 gm. How far away 'from the.ftlInnmiamIt the

60-gm.matts be to get a balance? Check your guess by reading off the instance.

Enter this distance in the second row.

Repeat the same procedure with 30 gm, 40 gm and finally with 80 gm. Be

sure the stick It exactly in a horizontal position before you read thedis-
. t

tance on the left -hand side.; Al you perform the That three trials, do not

fo'rget to readthe corresponding distances and record themin yoUr

Study the numbers recorded in the left sine of your table. Is there any

donnection between the mass of tht objectsand.their corresponding distances

from the fulcrum? Compare the mass and distance in the first row with the

mass and distance in. the second row. Notice that the value of m decreased to

one half its original mass, namely from 120 gin to 60 gm, and at the same t#0.

the value of the correspohding distances doubled from 10 an to 20 am. Compare .

the'numbers in the secOnaand third trials. The distance dChanges as the

mass was decreased from 60 gm to 30 gm. What is the ratio between th&masses;

4

-'what is the ratio between the matching distances?,
,

The table show_ five different pairs of masses and,distancea,which-makt

r.

the 'tick balance. For instance, in the first trial the mass of 120 gm at

10 an has the dame effectap,thezmasi',of 2E6.gm at 6 am. How are the numbers

in these pairs related? You might guess thatithe product of 120 X 10 equals

-ihe-pradUct of 200 X 6, or, -120 X 16'L 200 x 6. -

In the'second trial the mass o('60 gmat 20 an has thesame effect as

5

t
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the mass' of 200 gm at 6 an. The product 60 gm x 20 cm = 200 gia x 6 cm again.

Do you find that the product of the mass and its distance on one side'
must be equal, to the,,product of mass and diatance,on the other whenever the
stick balances? ,

let's check:

Left 'side :Right side
Trial' 'Mass '44'Di-stance Mass DistEince .

III . -

30 X 40 = 1200 200 x 6 = 1200
IV

.
140 x 0 = 1200

,,
... 200 x 6 = 1200

V 80 x 15 = 1200 lip x6 = 1200

After proceedIng down the table anti checking -all entries, we conclude
the foll'owing: "Whenever the stick balances, the product 'ormass.and disu
tance on one side equals the product oil mass and distance o.n the other side."

In this experiment, %.Thenever, the stick balanced, the.product.of the
masses and corresponding distances was always 1200: The table verifies this
result. This resuIrcan be put in fathematical -form by the sentence
m x d = 1200, sinere -hra" represents the mass of the,object on the left -hand

"").end of the meter stick,and "d" represents -i* distance from the fulcrum.

In the experimezit, the product of the measures of; -the as and its ,dis-
tance was 1200 in all cases beCause've were always balancing objects on the
left side with, the mass of 200gm at 6 cmIto`the rigt of the fulcrum. This
meant that when an object was k:spended on the left side, it was necest.ry to
slide this object along the eter, stick until the masss of the objecetimes'
its distah- from the - ... became equal to 1200.

01.1-r erim represents only one example of how to balance a serasw.
Any two obj can be balanced on a seesaw, provided that the product of the
.

mass and the distance on One side is eqtial to the product of .the mass and the
,

distance on the 'other side.. To verify this statement, consider the fo crwing. 4. ) ), a ...problems:,
.

. ,

' (1) At 10 cm from -the fulcrum , how .large a mass will balan ce a mass.
..-- of 30 gm which is 20 cmfrom the fulcrum? -- ,. .

, . ,t .4 .
Following ,OW rule: 30. x 20 = ? x 101.. This is satisfied.by a
mass a 60 gm. Check it on yotir meter stick instrument.

1

,,

0



(2) Where should we place 300 gm'to balance 90 gm placed 20 am from,

the fulcrum? Find the distance by suspedding 300 gm from the /r

stick on one side ipd 90 gm et 20 cm on the other until you get

a balance.' The distance is obviously 6 cm, since 90. X 20 = 300 x 6.

In slImry, ve,conclude fresh our experiments that if the product of the

mass and distance on one side of the fulcrum is equal to the product of the
N,

mast; and distance onthe other side, then.the seesaw balances.

Ekercise 1

1. Beloit is 4 table of values tram en experiment seesaw. Masses were

left side Right side

..

d

,

,

..

Mass of
objects
in pourdi

'0 a

Distance
-from the

fulcrum
in cm

d 7

6 . 8 'r 12 - 4

6 8 2
...

.

6 8
.

6 8
t

d. 24 .

6 8 16

6 8 6

hung on the right-hand side

to balance the 6 pounds at

8'cm to the left of the ful-

crum. Find where we should

place the masses shownin the

table to balance -6 pounds

placed at 8 cm from the

fulcrum-
i(

2. Find'the.values for the masses 'and distances in the givenAable if you

want to balance 20 gm at 14: mm from the fulCrum on the other side.

m gm

d cm;

10

15 30

Haw far franthe fulcrum should a 26-ga mass be placed, on the left

50

side to balance a 40-gmt.mabs placed 20' ca fret the fulcrum on the

right side?

4. A boy, whoie MASS is 70 lbs, rode a seesaw yl.,th his father, whose mass

is 175 ihs. If the father sat 4,ft from the fulcrua, where must the

.boysit tolbalamce the seesaw?

'Find the missing values, in Problems 5, 6 and 7.

i7f;

'

4^.



7.

30 gm

12.5 ?

6o

160 Sm
N.

250 Xi

8. Is there a place on the seesaw where a sOlgle mass can be ,plated and a

balance obtained? if so, what,is the distance of the mass, from the

. 43231

71.3- Number Sentences ...

t..

1.. t .
t

1 In. the previous section we found ho' one can balance ,a seesa-q supported
,

A its center, Different masses were balanced with a fixed mass of 200 gm at
,

6 cm from the fulcrum. The results were recorded in tabular form...**Tilan', .'"
from this table, a rule Was developed and expressed in the faatheMiticai form_

. ..--',; .,c

--- .
a x d = 1200 -

.

, N
where `ban represents the mass of any object that is placed on thg stick and.

, "re represents its distance from the fulcrum.
0

Themath,ematical language which uses the number sentence to state re-
4T

nAt10104TIS is the language used by the scientist, engineer, Mathematician

and others to communtnate ideas to one another. The number sentence
s s _

..wa m x d = 1290 .
c.:,

' ...'

. 4

foxmatioxi to be stated in a simple manner. For example, E. X d = 1200 is s i .r
tkareslatatimptotall_the data found in thralelidug. experiment and in

Eternise 1. Fbithermore;'it Was not necessaryto setup sn experiment for

[
.;

is'an illustration of this form. This form allows gAat quantities,of in-

each problem in Exercise 1 Ater the relationship was determined. "Note, too,

4,"

itIS

/
114.
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that in writing this sentenceonly,.five symbols are used,,"m", "x", "d';'"="

and "1200".

.

Just as sentences are used E. talking and writing to discuss our every-
,

Ydayexperiences,
so sentences are used in science and mathematics to, describe

ana explain. For instance, you are familiar with the following sentence:

The diameter (D) of "a circle equal; twic-the radius (r). This can be stated

in mathematical form as "D = 2r". This is justas good as "Johnny Is sleepy

today". The former sentence states the fact that'in,any circle, the diameter

.is twice the radius. The lattei,sentence states thesfact that Johnny is

sleepy today.
).

.1

There are many other sentences that make statements about numbers and

quantities. However, not all sentences make statements about quantities that

F- e equal. For example, "Five is greater than three". As-a. number sentence

this is. written 5 > 3. The symbol > is read "is gfeater than".4 Likewise, the

symbol <As read "is less than" and is used in number sentences such as

-T.Three is less' than ,five ", written 3 < 5. Another symbol sometimes usdd is
read "riot equal to", and -written The set of symbols,,=, >, < are the

verb ihreses, commonly used in writing mathematical sentences. These verb

phrases state he relationship involved between the word phrases. You are

familiar with sentenc- es such as "ThesuM of a number, x, and eight is twelve".
, .

This verbal sentence can be stated in mathematical form b' saying x + 8 = 12.

Similarly,

Nine is greatiet than ihe sum of three and four:

The product of three and five is fifteen:

9 %. 3

3 5 = 15

Twenty-one is less than the sum of eight and fifteen: '21 < 8 i 15

The product of a certain number y and three-is not

equal to six: y x 3

These senteadss are examples of nutber sentences.

For example, the first kentence, x -I- 8 = 12, consists of two expressions,

"x + 8-" and "12". Mese expressions are not sentences, they are only-parts.

of a sentence and are galled phrases. Then the difference between a sentence
- -

and a phrase is that a phrase does not make a statement but-a sentence does.

9

Number Phrases

Let Us return to the first two examples of phrases, x + 8 and 12. Atice

that 12 represents only, one specific number whereas x + 8 can represent %ny

;

.1

9 -
I /

7

e
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a

number, depending on the value of x. For instance,

if x is 3, then x + 8 represents 11

if x is 8, then x + 8 represents 16.

A number - phrase is a name for a number.
11

If thePhrase represents a 41'4

specific number.; it is called é closed number phrasear more simply, a closed
phrase. For example, 19, (3 + 2),

'3 2(3' + CM), (4 x 7 - 1), etc. are

closed phllises.

Number phrases which do not represent a specific number are called open

number phrases, or more simply, open phrases. The value of the Thrase de-

pends on what number the symbol in the open phrase represents. For example,

3x + 2 represerits 5 if x is but it represents 14 1f x is 4 and 32 if x 'is

10..

Exercise 2

1. Translate each of the following number phrases into mathematical symbols:
(a) The sum of the lxamber x and 15.

'(b) The product of 8 mix.

(c) One fourth:of the number x.

(d) A number which is 4 less than x.

(e) The division of 18 by x.

(f), Three greater than x. .

(g) One less than two thirds of x.

(h) The number xless'than 23.

For each of the number phrases in Problem

,..ca by the phrase if x = 12.

1.5 Parentheses

Assume you are faced with a problem such as the following:

"Find the number represented by the open phrase 6 + 8n, if n

Then, replacing,4 for n we get 6 +.8 4.' This is a 'numerical phrase. What

number does it represent? If, you look at it one
.

way, you might say,

6 + 8 is 14 and 14 x 4 56.

find the ntiMber represented

a.

Therefore, the numerical phrase 6 + 8 x 4 could represent 56. However. if we

look at the phrase another way, reading it fran right.'to left,'

8 x 4 32 and 6'+ Akw.

Therefore, there seem to be two possible answers. In order to eliminatOjthe
,

18 10
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. '

posiabilkty of calcUlatng the value of an open phrase in various ways, the
4

following' mathematical rule is defined: -

"In any given expression where there is a multiple operation,

we agree to multiply and divide, before we add or subtract."

o
Applying this rule to the. above example, we find the value of 6 + 8 x 4,

by.first multiplying by 4 which is 32Yand then adding 6. Therefore, the

correct answer is 38

Illustrative examples:

1.' How would you find the value of 8 - 12 ÷ 2? Here the division is done

before the subtraction, so 12 +2 = 8 6 is 2.

' 2. Find the value of the closed phrase 4 x 3' - 6 4-2 + 1. Remember in this

case the multiplication and division are doneliirst. Therefor', '

,4 x 3 = 12 and 6 4-2 = 3. So 4 x 3 - 6 4-2 + 1 can be simplified to

12 - 3 + 1 whichis 10. a.

3. Consider a problem, from arithmetic. Subtract 2'from 15 and add 3 to the

difference. Translated into mathematical 'form, 15,- 2' + 3. This

problem involves only subtraction and, addition (no multiplication or

division in it). Iksimplifying, you can take your choice. T.You can ,

read from left to right, 15 - 2 is 13 and 13 + 3 is 16, or yolian_

start to read from.rightito,left, -2 + 3 is +1 and 15 + 1 is916: Both,

'ways give the same number, 16.

hi working with the phrase 15 - 2 + 3, we must be careful to itttraat

only the 2 from 15, and not the sum of 2 and 3. To avoid similar confUsiop,

we use symbols "( )", called parentheses. This meting that when we enclose,

a'a numerical phrase such'as 5 4k4 in parentheses; we intend that the phrase'

"(5 + 4)" be treated as,:ek single number. Fol. example, to subtract the sum

of 4 and 3 from 18, you write 18'- (4 + 3). That is', (4 + 3) is treated as

a single number, 7, and subtracting the 7 prorai18, we get di.

Using parentheses, there should beno,difticulty translating. the follow-

ing problem: "Multiply the sum of 2 and 6 by 4" into the symbolic form

(2.+ 6) x 4. Treating (2 x 6) as a single number, you get 8, and-8 x 4 is 32.
. .

On the other hand, working with a phrase like 2 + 6 x 4, parentheses pre

not needed since we agree that multiplication tomes first before addition._

Therefore, the product of'6 and 4 is.24, and 2.4- 24 = 26. NOtice that the two

phrases, (2 + 6) x 4 and 2 + 6 X 4; represent twb different-numbers. The first
.

is 32, and the second is 26. One final note: a numerical'phrase lire

2 6) x 4 is often written without the symb61 "X", as in (2'+ 6)4. Here.'

.-11' 19
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.7,
(c) 2 + (ii X 5) a. 30
(d) + 3 X '2 and +3,)2

the operation of multiplication is 'implied.:
These expreisions are but ttiret methbds :used for indicating the operation

of,multip1icatiOn Webaire 'already seem this done in such expressions as 2r,
which is ,reed, two times the number represented by r". *lien we

it is understood that 11. is multiplied by (2. +;6).
tThe most common-,.forms for, indicating multiplication are as. follows, -

:,'
,'- , ka),, ' 2,X r

..:, (b)a 2r,

-c (c)-, 2(r.)

.,
...,'' I(d) 2 .7f

°..;, ¢.-.11. (e) (2)(r) r,.. ..
.

Form (b) 1,s not adceptable when r is a numeral.. For ex ple, 28 means twenty-
eight, not 2 times 8. The dot of form (d) ',Would be us in this case as 28.
In Section 1.3 the, number sentence m X d = 1200 could have beehyritten...

'Ind = 1200 :if form (il):is usedt, .

,. .

;,
There are. fewer expresdions used for division, only 3 forms being co

used.. Everyone Ls familiar with the form r -,1- 2, which is read, "thl number

represented by r*,dlyided by 2". The other two forms use short line sVgments.
........ *rOne is and, the other.W .2. '

f.

Exercise 3

,

1. Which of the fol ng closed phrases name the same number?

(a) 2 + 4 x 5 a 422
(b) (2 4)5 an *30

4.

I
5<x 8 + 3 and (5 3,.*

sy,
(f) 32 8 - 4 and X 4 + 5'

Placenarentlieses in the following so
---

(a) 2 x 3+ 1 represents 8
_(,b)_ _2_4- 4'x 3 represents

(c) 6 x'3 - 1 represents 17
(d) 12 - 1 X.2 represents 22
(e) 18 - 6 + 3 represents 16

2 0 12
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Find.a number for each numerical phrase :

(a) 5 x 8 + 7

(b) 5(8 + 7)

(c) (9 + 1)(3 + 4)

(d) 6 + 2

(e) 14 - 3X 2

(f) (17 - 6)4 ,

46 2)
(h) 9(1 + 3) (8 4-,?)

(i) 9(1' +-3)- -= 8 + 2

4. Using paehtheses, rewrite the following closed phrases so they repre-

sent the same number. For instance, 2X5t6X2 can be written

(2 X-5) + (6 X 2) and both represent 22.

(a) 3 + 8 - 4

(b) 2 x 6 + 4

(c) 3'x 5 - 44X 2

(4) 364-9 + 5 2-

-1

1.6 Distributive Property of Numbers

. Another property of numbers can be described by using parentheses. How

would yod solve the following problem in the simplest possible way?
.P

'A meat market sells steak for 41.20 a pound. A woman

bought two steaks; one weighed 3 lbs, and the other, 2,

lbs. The total cost of the two steaks can be computed

I -

in two ways;

(1) 3 X 41.20 = .43.60, the cost of the larger steak'

2 X 41.20 = 42.40, the-cost of the smaller steak

46.00,.total cost

Or, (2) Take the total weight, which is (3, + 2,) pounds,, and

multiply JI:101.20 .

'(3 + 2)(41.20) = 5 xi 41.20 = 46.00

06-

Do you agree that in computing the cost, the second method'is simpler?

Consider another problem: ..,

. . .

Two ,strips G,...f a carpet, -one mOsuring 3 ft X 8 ft, the
'.';' . 7 .

.

bther 3'ft'',4,12 ft, are sewed together to make one runner,
4

,

or a-single pid6e. How many Square feet are there in the

runner?



AL

_a

3rE 24 sgftl + 36. =
:r 6-ft-44' 12 ct

,

r o

3ft. 60 scir-t

-Flo_ 0412)-4-- --.1

From the 'illustration, it can be seen that the sum,

of the.two pieces is equal to the iinal pieces,

3 x 8 + 3 X 12 = 3 x.(8 + 12)

that is, the area of the first piece plus ,the area Of

the second piece is equal to'the areaof the runner.

Thise problems illustrate the distributive property'of multiPlicationk
c)er addition. This property can be further illustrated by the'following

4947proAtct:

7 X 13

70.0 +

This maY-be written as
.-

Notfce that 10 + 3 in the' parentheSeS

requires multiplication of the sum.

This product is
7 x 10 + x 3

This indicates that the multiplication

= 7 + 21

= 91

has been distributed over each term in

the addition.

The name "distributive property of Multiplication over a ddition" is

usually shortened to "distributive property". We can state-it in a .geneial.

form as follows : "For every'ruunber ,a and every number ip and every number c,
P.

2.

-

a(b+.,c)=aXb+aXc".

Study the following examples, carefully. In one of them, .the distribu-

lave property applies; in the ,other, it does not.

-8(3 + 2) = X 3) -1- (8 X 2)' Here the dist Operty

does apply. -ittiplicat on is

distributed over addition.\
'8 + (3 X 2) /\-(8-+3)x (8 + 2) ,,Hete the' diatributiveproperty. ,,.,,

.

does not apply. Addition is not

)-

distributed over multiplication:

The distributive property of multiplication over addition is frequently used'
, .

in mathematics. ,

' 1

4 22
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In the following examples, to further your understanding ofdistributive

property) compare the vague of the indicated product with the value.of the

indicated sum".9,
:*

Indicated Product Indicated Sum

8(4 + 3) = 8(4) + 8(3)

3(100 + 20) = 3(100) + 3(20)

5(26) ,, = 5(20) + 5(6)

6x53
3

6(5) + .

Thislilinstrates the changing of an indicated product to an indicated sum.

Here is another example:
-

4(10 + a) --'4(3.q) +4(2).
Aits,

0'
It is alsp correct,to4change an indicated sum to an indicated product by use

, ,. .
,

of the distributive property. For example, g

° 4(10),et 4(2) ,F 4(10 t))..I

'

Again, compare the therindicated aumwith that,of'thei1ndic4ed

. ,

pro-

: f.

,indicated Sum Indicated Product

15(8) + 15(2Y 15(8'+

*.1(7) + 21(3) 21(7 3)
4

EXertise 4

.duct In the following' pips:

;

,'Which of the following problems are indicated sums and which are indi -

pitted prOducts?' -

(a)* 3(8 + 5), - (A) 4(3+.6)
''(b) .3(8) +3(5.) (e) 7 + (3 x 6) 4t i

(c) .2(6) + 2(-
,J.

. .
-,,,,

i

3) (f) (7:* 3)6 9 .

2. Express the following ingested products as indicated sums and ,indicated

.sums :as indicated products: S' .".,
o

,..
. N

4 .

(a) , 4(47 'f: '3)'
,

9 f

_(b) 9(34 + 6)

(c) (8) + 2(4)0. 3 3

.,(a)- 18(3.2) +48(.8)

Ni

'44
15

9

V
9

4.



Peiform the.indicated operations the easier way. Shdy your method.

Illustrative Example: e '

110(8) + 110(92) = 110(8 +092) or 110(8)+ 110(92) = 880 + 30120

110(100) -= 11000

7 11000

12(3 +)
ici) -q3-)

) +9)

(d) 0(17 t 83)

(e) -§.(6 4-9)
9

4: . Show how you could hse the distributive property to perform the multi-.,

plication mentally.

Examp3p:

(a) 7(22)

(b) 12(33):

(S) 15(36)

6 x 2( 6(20 + 4)

6(20) + 6(4)

/ = 120 + 24

ti

144

4
a 1.7 Translation of as Phrases to Word Phrases

Nutbers are often used in talking abdut things. For instance, the num-

ber three can refer to 3 books, 3iincheS, 3 apples; etc. This does not mean

that "3 books" is a number. In the same Vay,°,any number, n, can.be used td

talk about thiniS like n books, n inches, etc. Remember when we Bailin books";
.

we mean hati41 is the, number of books. Similarly, the translation of an open

phrase like 2x + 3.to ajvprd phrase depends on what meaning we give to X. The

number,3 must be given the same meaning'as that given to x. For instance, the

phrase 2x + 3 can be tianslated\in the following ways:

\"". :,4

1

C

24. 16'
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x 2x . 2x + 3

hUMber of points

°Mary made in a game
.

.

. .

number of poihts

Sue made if she

made twice asmany.

as Vary

.

,number of points

Sue made if she

made 3 more than

twice'as many as

Mary ,

number of books
..,

Jim has

. 9

. V
number of books

., .

Peter has if he

has twice as many

as Jim does

, 4

number, of books

Peter hasAf he

has 3 more the

twice as many as
.

Jim does

.

1
As another..eXample, the phrase -a - 4 can be translated as follows:

2

a 4, -e
2

-a - 4
2

length'of a,

rectangle

the length of-a ..w

rectangle if As

the length'of'a

neir rectangle if its

.

.length is,half that

of the original

length is 4 units

less than half that

rectangle of-the .original

,, .
.

.
ractangle

\ distance from - distance from city d.t,tance from city A

city A to Aito 'city C if to city D if its

city B its distance is distance is 4 miles

half that of the less thpn half the

Ok

i

distance from

city A to city B

distance crom city A.

uto,oity'B

Theseare the two translation's of each of two phrasts. Many mert% trans-
_

lations are possible for each phrase.

'Exercise 2

1. 5921 you think of-a different way to translate the phrase 2x + 3 into a

owordphrasql ,

2: How many translations of 3.X - 5'can'be'made? "Give examples.

I

; 4
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4, . . ,

9 V.:3. *In the ollOrling problems', wftte a translation' of the phrase to a
8 .

01, 0
'?"1,...

'verbal phra .
...

_

(a) n'+ 6 (a)

.4 -T-

0

(b)O n .: 6.° a (i)
.x. (o). 2n 1 t.

(d) 2n +

14 6.4.-4.:: t.,

, ,.
%. 1.8 . Translation' df. Word Phraies .to rases

, 7 t;
, .

,-

In the last sectilon-oten phrases ere translated into void phrases. We

notisid4Aht there.was not a single translation but many possible translations.

For !instance, the translation of the Phrase 2n + 3 depended on tht meaning as-

sigx{e the symbol n.

openIt is also posaible to go the other way, -'and translate word phrases 'into
opVen phrases.

-Suppose you want to talk about your age 5 years

since you know your age. YOu might reason as follows:

from now. This is easy

The number of years in my age,now is 13; then 5 years

from -now my age will be 1.13 +5 years. So, I can say

'that in 5 Years.myage will Yie 18 years.

Let us say you want to talk about Bill's age 5 years from now. Suppose'

you, do not know his age for sure. Then you would the number of years
.

in Bill's ose now is x; consequently, the nuMber of. ears in age 5

years from now ii,x + 5 years. Notice the *rase "x + 5" represents the nuMber

of years. in Bill's age 5 years from now. In this problem a word phrase has

been translated (the numbei of years in Bill's' age 5 years Aompow) into the

syMbolic phrase (] + 5).

How would.you translate an expression such as "four more than a number

y" into a symbolic phrase? In thinking about this expression, you could say

that we begin with a number y and add 4 to it. This suggests that wewrite

y + 4. .

Consider thevfollowing word phrase: "A 11n segmeat -3 feet longer than ;,.1
:

A
a

another line segment". Our purpose is to write this word phrase as an open

phase. The number of feet in the first line segment is unknown. .Bet "f" re-

present the number of feet in first segment. Then "f + 3" represents the

nuMberof,faet in .the second segment.

18



Exercise 6

1. Translate the following word phrases to symbols: *

(a) "If the number of years in Bill's age i now K, whit is the number

of years in Bill's age 7 yearsfroehow?

(b) The number of cents in x,quarters

(c) The number of cents in x dollars

(d) The,,number of years in Sam's age 3 years ago

(e) The-number of years inJohn's age 4 years from now

(f) The Omber of feet in y yards
/

(g) The number of inches in b yards

2. Translate each of the following word phrases to symbolic phrases:

(a) The sun of a number x. and 2

(b) The number x decreased by 8

(c) The number x subtracted from 15

(d) The product of 7 and x

(e) The quotient of a number 3 divided by x

(f) The number x increased by 6

(g) The number x divided by 2

(h) One third of a number,x,-

3. For each of the nuM6er phrases in Problkm 1, find the number represented

by the phrase if the unknown,number is:24.

4. Write open phrases to represent each of the following: II
.4%

(aT The sumof an even number and the next even number

(b) One half of the sum of a number and 6

(c) Seven lesi than 3 times a number

(d) Twice a number increased by 3

(e) Twice the sum of 7 and 2

(f) Find the total age of Mary and Sue if Mary is 5 times as old as

Sue is.

(Hint: Let x represent the number of years in Sue's age.)

(g) The number of cents Mike has, if he has x nickels and twice as

,many, dimes as nickels

5. If the,sum of the numbers t and 3 is doubled, which of the followin,

phrases would be a ..correct name for the sum? -
.

2t 4 3 or 2(t 3,)

1927
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If 5 is added to twice a certain number n and the sum is divided by 3,

which phrase is the correct name for the quotient?

2iLL2
3

or

7. If one fourth of a certain number x is added to one third of four times

the same number, which phrase'is the correct name?

I{ 4x) "+ x) or .-1{x) + i(x)

8. If the number of gdllons of milk purchased is y, which is the correct

phrase for the number of- quart bottles that will contain it?

z 7
1.y or

L.

9. If a is the number of feet in the length of a cartain rectangle and b.

is the number of feet in the 1.-lath of :he same rectangle, which phrase

is the correct name for the perimeter?.

2(8 - crab
Fill in the blanks in the follc,-..4n.g. proble ms:

10. If k represents a number of kilometel..ers, then the Phrase

represents the number of meters in k kilometers.

A mathematical phrase indicating the n:.:mber Cent±=eters in s meters

is

12. Given a symbol a representing the number cf liters in a container, the

phrase represents the number of millimeters in that con-

tainer.

13. The number of grams .n p milligriiss is

14. The number of grams in t )1lograms is

15. Therefore, the sum of t kilograms and w grams would be

grams.

16. The number of centimeters in k meters and n centimeters would be

17. Adding t centigrams to s 'grans would result in a sum of

grams.

18. In a mixture made uvf oxygen and nitrogen, there are 4 times as many

oxygen moleculei as nitrogen molecures. yrite a mathematical phrase
*

for the' number of oxygen molecules if there are h. molecules of nitro-
.

gen.

20



1.9 Bumerical Sentences

-
In mathematics ve use sentences tc make statements abcnt hnnbers. For

instanee, consider the folloving examples:

8x-=30-2

2(15)

5 > 3

All of these sentences Involve only nanbers. Sentences utio4 maZe statements

abut nnmbers are called' numerical sentences.

For example, :Ile fIrst sentence "8, x = 30 2" states that the nuMber - .

represented by "8 x :s the sane as the :ter rgtra=0"tgA ty "3C - 2. 7.1:

read "8 x Is egnal .:F 30 2-, an It Is a trle sentence.

On the otherand, "3 6 = also a sentence. rssence-na..es_

the statement that the nuMber ;3 6 Is Is a enent. th3 =9
and certainly is nct I-. Ervever, "3 6 = 1" Is stIll a perfectly

tency, but it is a,false.settence.
-

Exe=mise 7

TryV cate whethergaach of the fclIcving sentences Is trne or false:

(a) = 3(10) - 3(5)

ft) 42; =

(c) :=(P = .1(2) -5

(d) 2.3 , x 5) = -

(e) X635X -6
(f) 3 . x 5 9 = 2 x 6

(s) 8 6 x 8 = 18 x 7 . 23

(h) 3. x 23 - -2 x = 2 x 8)

1.10 Open Sentences

ConsIder the follouing:

(a) is a student In cur class.

(b) is a sealcn of the year.

(c) The colcr cf ter hadr is

(d) The snm of , - and 7 is la.
7 -;--- -- - _

Thes e Incomplete sentences are exenples of open sentences. hey are
i

2:
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neither true nor false until the sentence is .completed. Ths set of elements

that may be used t .comilete.the sentence is called the dcmsin of the optic

sentence. For example, suppose that the domain of (a is the seto'

of students of our class. Then, when the tiank in a) is replaced by any
..

member of'the domain, we get a true'sentenCe. Suppose, however, phqt tae

'61Maln-ii-1.(b) is the set (spring, summer) Setter, winter). lf-the blank.
.

(b) is replaced by "September", we get a false sentence.

The set of elements in the domain of the on sentence wrgdh, gfzer
a. -placement, prod.zco C &seneenes s called the truth set of :.en-

t=ce. Notice coat the truth set depends on toe domain. For exaatle, if the

doma:In fort;!; is the set cf nunters'less than. 1C, then toe trutn se: of (d)

issmpty. However, if the domain for d, is, the set of nunters greater than

IG,tne truth set of,d; ocntaihs only the huntar 11.

Those open sentences s-ch as d: which contain nunters or qlantities

will be of special interest. :t is cotwenient to use a symbol, such as x or

or n, instead of the 'clank so that we hay wmtte 'd}' as follows: "re, stta

cf x and This is &rain an open sentenoa4.::,- ts4inszt;7.er

false until x is replaced by a mc-tPr of the 4nr-=in cf toe :pen sentence. A

sy-tc', su ch. as x or y or -0:: a blank, which can :e replaced oy any member

of a given set is called a var'A'-'0. The g_ en se4 is called thodoma'r, of

the vario'-'0.

:onsider the following open sentence: "The sum of y and 6 is

is not meaningfu l. to disc.:Ss the open sa"-ince until we specif,. the domain of

y. let tie domain of y 'cc all positive numbers. Then write the oven sentence

in symbolic-for= as

What is the truth se: of this open sentence? For instance, .,.et us guess

that 3 is in the truth set. If we replace y by 3, do we get a truth statement?

Obviously not, 'because 3 6 = is a,faise statement'. A few trials will
convince you that the truth set 'contains only the number 8.

rThe truth set of an open sentence is also called the.solut'iCt

Thus, the solution setog the open sentence y 6 = is the set whose only

member is the nu.mtar S. We shall also say that 8 is the *solution of the

equation y 6 = 1-.

Suppose we want to solve (to find the truth set or solution set) of

the open senience x = > If we assume x is a variable whose domain is

the set of all real numters, the open sentence would state that a m:amber x

22
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1
increased by one-if-greater than

2 For what numbers does the open sentence

become a true sentence? .Test to see if* 2 is in the solutiOn set. A little
Ithought us that-it is not, because the statement ,1

+ 1 > 5E. is not true

Certai , any number less than 14 will also not be in the solution set. How-
.

ever, any number greater than 42 will be in the solution set because if it is

increased by one, the sum wil,1 be greater than 5 1 . For example, 4.6 is a

solution because

1.6 1
+ 1 > 5-

2

is a true sentence. Therefore, the set of numbers greater than 14.=.
2

is the

solution set of the inequality x + 1 >
2

Open sentences are not completely specified until the domain of the

variable is given. Since inmost, mathematical questions the domain is the set

of all real numbers, we shall frequently omit making any specific statement

about the domain. We make the following agreement: :If-the domain is not apeqi-.

fled, it is understood to be the set of all real numbers.

;A phyfical problems, the domain cannot be tht set of all real numbers.

,For example, in the seesaw problem we found and = 1200. Here, the domain of

4 is the set of positive numbers between 0 and 50, because the distance from

the fulcrum can be at 17,.e most 50 am. For instance, if in the original seesaw

experiment we asked at what distance from the fulcrum should a 20 -gm mass be

placed to balance the 2C0 gm at 6 cm, we might do this: Let d be the distance;

then*

20 gm x d cm.= 200 gm x 6 cm = 12po gm x cm.

It seems that d =.60 cm. '.Hol.re7ver, this answer is clearly nonsense. It is im-
,

possible to.balance a 20-gm mass on a meter stick against a 200-gm mass placed

at 6 cm fry the fulcrum. The mathematics gave a nonsensical answer because

we did not specify the domain of d.

In summary, a number sentence

(a) an equation, if the number phrases are connected by the symbol

"=", meaning equality;

(b) an inequality, if the number phrases are connected by any of

the symbols, j, >, <; these symbols are verbalized "is not

equal to", "is greater than", "is less than".,

The set of numbers Which,make an open sentence true is called the truth

set or solution set ofthe open sentence. To solve an open sentence means to
4,1

find its entire set of solutions. The set of solutions of an open sentence
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may contain one member, or it may contain sever,(71 members.
4'

When the set of solutions of an open sentence has been found, we say

that 'we have solved the problem.

-t
Ekercise 8

1. In the following proiilem's assume that the domain of the variable is

the set of all real numbers. Use your knowledge df.arithmetic to ,-

find-the solution set for each'of the open sentences.

x+ 3 = 5

(b) y + 3 > 5

(c) 4x =

(d) 4x / 12'

(e) 2

(q b'+ 8 < 10

2. Replace the box With a- mother that will make the sentence true. 4

(a) ,+ 3 = 12

,(b) a + = 8

( c) X + 2 = 23

(d) 4 x = 20

3. Iii each of the following examples, select those el nts of the domain

'which make the open sentence true:

(a)

(b)

(c)

(d)

x + 2= 12 (8, 4, 6, 40 is the domain of x

3x = 12 (6, 2, 4) ig the domain of x

16 y = 10 (8, 10, 6f is the, domain of y

x
2

+ 4 = 8 10, 2, 4) is the domain of x
r

4. Let n represent the number of people that g t the local movie on

Saturday night. What is the domain of, n? If all tickets cost 41.35

each, 'and the total collection for one night is $235.25., toymany pepple

bought tickets?

5. -Let g represent the number of gallons of gapoline you buy at the filling

station. What is the domain of g? If eadi gallon costs 3q and you pay
.

42.76, how many gallons did ypu-buy?
$4

6. Let p represent the number of pebple who go to a dance at which only 30

couples are admitted. What is the domain of p ? If each 'Couple must be

accompanied by a chaperone what is the dOMain of p?

k?,
24
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1.11 Equations and Inequalities

The previous section dealt*with open sentences. 'These sentences in

cluded relations between quantities which were equal, unequal, one greater

or less than the other. Because of its frequency of use, the class of rela-
.

tions that are equal are called by a special'name; "equations". Word phrases

connected by, the word phrase " = " state this kind of relation. Therefore,.

sentences stating equality between numbers, or quantities are called equations.

The relation'between the values obtained in one of the Balanced Meter

Stick experiment was

120 X d = 200 x 6 .

The value d was obtained exnerimentally.by sliding the 120 gm mass to bring

the meter stick in balance. The ,value of d was found to be 10 cm. This value

of d is the solution of the equation

AL -120 d = 200 X 6

If the /, >, or < relation connects the word phrases, the sentence is

called an'inequatity. Such a relation Occurs in the, preceding experiment if

the meter stick is not balanced. the 120-gm mass is placed at a distance

greater than 10 cm from the fulcrum, the relationship can be described as

120 X d > 1200 .

Likewise, if the mass is placed closer than 10 ;cm, the relation beCOMes

120 X d < 1200 .

Both relations are described by the statement

120 X d / 1200 .

These are examples of inequalities. The important.thing to notice is that

`any statement which indicates that one number or quantity is not equal to

another is called an inequality".

Exercise 2

Express in equation form the following :

1. Assume the cost of gasoline is 32 per gallon, and C represents the

total cost of gis'oline in cents. Write an equation for the total cost

of n gallons of gasoline.

2. Write an equation for the cost d in dollars of n gallons of gasoline at

32 per gallon.



Write in symbolic form the following statements:

3. The diameter (b) of a circle equals twice the radius' (r)..

4. The perimeter (P) of a triangle equals the sum of its sides,(a, b and c).

Which of the following sentences are true and which are false?

(a) 5 4. (8 4. 3) = (5 + 8).+ 3

(b) 6 + 4 / 2(4 + 1)

(c) 5+ 2 = 3 + 4

(4) 3.5 - 2.9 2.3

(\e) 8(3) / 3(8)'

(f)
1.4.

''2

Write five true sentences involving each of the symbols,

<, 4';

7. Write five false sentences involving each of the symbols in Problem 2.

8.

.

9. How far from the fulcrum should you place a 20-gm weight on tile left

side to balance a 40-gm weight of 20 cm from the fulcfumalilie-T:ight

side of the st ck? (See illustration.)

Put a numeral in place of the symbol so that the sentence in each'`

case will be true.

(a) 1 = 7

(b) 3 / 5

(c) 3X =12

(a) 6 = <2

10. How far froM the fulcrum should you place a 20-gram mass on the left
,

side of the stick to get the following inequality:

20 gm X? am < 40 gm X 2 am ?

To get 20 gm X ? am > 40 gm X 2 am ?

Can you get more than one answer?
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1.12 Finding Unknown Masses LI Experiment

OV
' The balanced meter stiek can be used in performing other experiments.

.

Recall the rule that was obtained with pie seesaw experiment. If the

product of,mass and distance on one side,of the fulcrum equals the,pro4ct of

mass and distance on the other side, -the meter stick is in balance. This

rule can be used to measure the mass of any object, for example, a piece of

rock.

Start by setting up the meter-stick,inOrument just as was done in the

seesaw experiment. (See Figure 7.)
A

Figure 7

Attach a piede of string to a small rock so that it can be hung on the

naperclip hooks. Have the standard masses at hand. Time can bR saved if a

standard mass with approximately the mass of the rock is seleciea. Hold the,

rock in one hand and a standard mass in the other. Select a standard mass

which is approx2Mately tbe mass of the rock.

Hang the rock of unknown mass at a convenient distance from thefUlcrum

on the left side. Use any convenient distance such as 20 cm. Then place the

&elected standard mass on the other...Side at about the same distance from the./

fuldrui. (See Figure 8.)

0

vex -4. ai.:574e/Ice

30 70

/160a//7 /77055

2 Figure 8

27
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D.1- you get a balance?

Follow the procedure used inthe seesaw experiment. Slide the standard.'

mass closft to or fUrther away from.the fUlcrtmi until you get a balance Then

read the distance to the nearest cm between the standard mass and th4tUlcrum.
..F:e

Write down on a sheet of paper. Suppose it turned out to be.18 cm itnd the

standard mass 100 gm. If the rock used IS not exactly the same as your part-

ners', the distance read off will also be different.

'AW,
The next problems to find the magnitude of.the mass of the roci

Actually, yoUr balanced
4
meter stick is an excellent Illustration of a physical

model of equality. Whenever the meter stick balances, the ,product of the mass

on one side of the stick and its distance from the fulcrum must be equal to

the product ofilmass and its distance from the fulcrum on the other -Side,

regardless of the masses used on either side. This physical model of equality

can be described mathematically by an equation. In this case, the equation is
,,,

m X 20 am = 100 gm X 18 am

"m" is a'symbol that represents the mass of the object. What is the value of.

m ?

If

then.

m X 20 am = 100 gm X 18 cm

m X 20 am 100 gm X 18 am
20 am 20 am ,

If two quantities are equal, they can be iv ded by the same magnitude and the

quotients are still equal. For instance, if the mass of 40 golf balls is equal

to the mass of 30 tennis balls, both masses can be'divided by 5 and the
.

quotients remain equal: the weight of 8 golf balls is equal to the weight. of

6 tennis balls. By the same token,

.if X 20 am = 100:gm X 18, cm, then

m x 20 cm ,100 gm x 18 cm
20 cm 20 cm

X 1 - 1°°
0
gm X 18
,

m = 5 gm x 18.

m`- 90 gm

Simplify both sidele .Any number or

'magnitude divided by itself is 1.

20 am ,A
an

= J. or 2 =
20 ' 5

etc. 1Xm= m

'The mass of the object is then 90 grams. To check at this answer is correct,

substitute 90 grams for m in the equation.
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then,

m x 20 cm = 100 gm x 18 cm

90. gm x 20 cm = 100 gm x 1,8 cm

,1800 gm x'cm = 1800 gm xl\m

This shows that m = 90 gm is the solution of the equation. If these values

are used in the seesaw experiment,* the mass of 90 grams at 20 cm from the': ,)--
i,

fulcrum would balance the mass of 109 grams at 18 frot the fulcrum. Could

any other answer except 90 grants fulfill this cond tion?

Suppose we want to &ind.the mass measure of a piece of rock. To simplify

the arithmetic*inv-olved, hang the rock o'f unknown ma s at 10 cm from the

fulcrwn and usta 100-gran sliding mass n the other ide.

F

Figure 9

Then the sliding mass may be moved back and for h until the stick settles in

a horizontal lboLtiOn. Suppose the distance fro' the fulcrum measures 6 am.

Set up the equation:

Divide both sides of the equation

by 16 cm

m x 10 ,cm = 100 gm x 6'cm

where m is t e mass measure of the rock.

CT cmUsing the associative law, of multi-
10 (100
10 cm 0

gm) 6
am

plication

1m= 10 x 6 gm

m== 60 gm

The mass measure of the rock is 60 gm.

cs,

Exercise 10

-Ffnd the mass of a stone by using the meter stick instrument. Use a

procedure similar to that just described. Place the object with the unknown

mass on the right side of the stfck at 0 cm from the fulcrum and hang the 100-

gm sliding mass'on the left side Read off the distance when the stick is in

9
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balance to the nearest cm. Determine the mass of the.object in grams. Repeat

this procedure using three other unknown masses.

1.13 Multiplicative Inverse

Suppose we have the problem of finding the mass of another object. After

comparing its mass. with that of 'the standard mass, it is found that the.mass

of the object is approximately the same as that of the 100-gm standard mass.

,It is necessary,to find the actual mass of the object.

Place the objz9At 7.5 or 1-2 cm on'the left side of the fulcrum and the
2

100 gm at about the same distance on'theother side of the fulcrum. (See

Figure 10.)

14-10 1*-60/

30 '40 7b

A 0 the, gm
oheneyai,/ MOO

Figure 10

0

After sliding the 100-gm mass back and forth, suppose we get a balance at
.

6 am.

Le t X.represent the mass of the dhject. 'Then, using our rule, set up_

an equation as follows:

2 am X X = 6 am X 100 gm

In -2this problem we are supposed to divide both sides of the equation by .

Thismay seem to be a complicated computation. Holiever, mathematicians

have a better way of solving this type of equation by using the multiplicative

inverse. Let us consider this concept.

+r,

Perform the multiplication of the indicated numbers:

1
-2- X 2.=

. 2 x 3
=

5 x

7 8$ x =

30
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, Do you see any pattern in performingthe multiplication?

Look at these problems closely. NOVce that in each instance we multi-

plied the number by another number such that the product is always 1. This

pattern leads us to another property of numbers, namely, "For every numbers

except 0, there is another number called the multiplicatiye inverse, such that

the product of these numbers is always 1." For example,

.X2
1

2 = 1;

harmer 2 is the multiplicative inverse of.
1

. In the second problem,

2 3
-3- x =

Another name for the multiplicative inverse of a number is the reciprocal of

a number; for example, instead of saying that 8 is the multiplicative inverse

of
1 1

we can say that_8 is_the reciprocal of. Also, is the reeiprocal

2
of

3
. Finally, it is true that the product of reciprocals is one. The re-

ciprocal of 1 is i becauSeiX'l = 1.

What is the multiplicative 'inverse of 0? Do you.know of any number that

'multiplied by 0 equals 1? Letts see

'5'x 0 = 0

0 X 200 = 0

In fact; we know that the product,of 0 and any number is 0. Therefore, 0 has

no multiplidative inverse.

Examples. State the multiplicative inverse in each of the fdllowIng:1-

1

7

8

9

1

a

x 7 = 1 Answer:

x = Answer:

a x = 1 ' Answer: if a is not 0

k

In summary, every number except 0 has an inverse with respect to multi-'.

plication. We call this the multiplicative inverse. In the next section we

will'show how-the multiplicative inverse-can be used to solve an equation.

A
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1. (I
_aercise 11

4a
'Find the multipliCative inverse of esch of the following numbers:

1. ,,-(a) ':17 (e)--.16

):..1L:

4 (j),
(c) 5 (g) isv ,.

(d) 1 (h) 4

(k)

(1)
,..,c."

_
1:14 Solving Equations

The prdblem in the previotis section stated

12 am x'x = 6 am x 100 gm .

2

(ice)3

Thisequation is solved when X stands by itself on the left-hand side of the

equation. To obtain this, ply 15-- am by
0

2 15'2am /

the.muliiplicative inverse of 4.2 an ;
2

)2-1-1- X = 1X.
'

. .

.To keep our equality, we mustIMultipl 4e other side of the equation by

2
also.

15 am

The equation then becomes

1/0

122 .21171 x -
'15

2- ) 6 am X 100 gm
15-01M am

(l52 _12_41% x
2 .X ) X 377; X 6 cm) 100 gm

1X_12 k 100 gm
1

fi
X -

15

1200
r r X - gm15-

X = 80 gm

This means that 80 gm at
2

an from the fulcrum balances 100 gm placed t

6 cm from the fulcrum. -Check it on your meter stick.

Examples: Find the solution of each of the following open sentences;"

;then check your answer.

32
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. Illubtrative Example:

X =60

x = (131)6o

4 3 24o

1 X = 8 0

o X = 80

A

Multiply both sides of the
4

elation by , the multi-
3

3plication inverse of .

tY

Cheek:, If X = 80, then the left,memberys i(80) = 60, and the rJ.ght member

is 60. Therefore,, 4(80) = 60 is a true sentence, and the solution

is '80.

Exercise 12

1. Solve the following bY use of the multiplicati'Ve inverse.

(a) 12x = 6 ... J(d) 35- = iy (g) -3-a
2-'

=
2

(b) 7x = 14
. (e) 5y = 2

(h) 1 Ox = L3.

(t) ;Dc = 56
(f) ix = 1

5

(I) 2.3y = 4.6
v..

2. Translate each of the -follow-fug sentences into symbols and then solve

the,equation for the unknown.

(a) The number x platiplied by,5 is equal to 30.

(b) When a plbiber 1r is dividM by 4 the quotient is 9.

(c)
2

The product of .7 and the number, a is,28.

(d) Jane bought x stamps for 34 each. How many stamps did she buy

if she paid 6q altogether?

(e),Jow old is Susan if 9 times her age is 63?

3. Find the missing values in each case:

/8 A 6 as.

174f

b
? , .304s. It d el"! --4

. F-1
A
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4. Do you suppose a 90-pound girl could ever lift a 1000-pound box? Justify

your answer.

5. A child whose weight is 60 po;maR asked his father, whose weight is 180

pounds, .to ride a seesaw with him. Where should the father sit to

balance the Child if she sits 6 feet from fulcrum?

e 6. A. bar 6 feet long is, being used,Ms a lever to lift a stone. What is

the weight of the stone if a boy weighing 100 pounds. pushing down on

one end of the bar which is 4 feet from the fulcr= just balances the

stodl'On the other end?

1.15 Summar:J.

The experiments in this chapter prcvided data from which a relation

could .be Bete mined for balano.ing a seesaw. To find t.. is relation, it was

necessary to learn about rmlber phrases, won& phrases and verb phrases. The

word phrases and verb phrases gave us an open sentence which was the mathema-

tical expression of the experimental Lta. It was'found that she open sentence

stating the condition cf balance of the seesaw wad an eqtality between two

quantities anal therefore, an equation. When the seesaw was tot in balance,

the open sentence was an,inequality%

When the mass on the seesaw was an unknown, the truth set or solution

set of the equation was not obvious. It was necessary to solve an equation

to determine the value of the mess. The properties of the multiplicative

inverse and equality were used to find the solution of the equation.

o
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Chapter .2

AN'EXPEMENTAL AFFROACE.TO Fi,INCTIONS

2.1' Me. loaded Been

At this tine we will investigate the bending sf a be as the load upon

it is cllArged. We will .se the sane be thoughcIt the ex-De-1cent. -: will

be PIP^CAA in the sane position and always loaded frcc the sane poiht% By-

thee= in this rannP-, we are in a nositich tc stud; the relationship

between the .., ng of the been and the env= sf load. This = ^e -eats

factors 'ran entering iirectly into the ere:4-er.:.

A 15-inch flexib:e ruler nay be casloped-bc a dask'with a "C-clenp" and

used as a been. _F ere should be a sza.11 -uler abaut she inch
o

from the free end. Fasten a piece of strong thread to the ruler and pass the

free end thryugh the hole, The thread will .!le used for att.air_er -..'..o tie

been. To neasre the bending of the be'em, we will s:.-ply record the t-',./..-g4ng

position of the free end of the been as the load is t-1,enged. You =ay f4ad that

sore i'orm,of a pointer arrange=ent, suches a straight pin faste^e6 tc the

end, ell be helpful.

Support a =etch stick terhe-,"cular ts he
floor so that the position of the end of

the be cah'be read on 1...he,scale as the load

charges. The q.--P"e -nnbers or the neler

stick shauld be at the top- "(Figure 1.)

3 1
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First take a reading'of the position of the been with no load attached.

Nov hang a 30-gram mass frail the load point and take a new reading of:the
position of the'emd of the beam. Continue in this way, adding 30grems each

time, until you have at least ten readings. Be very careful in reading the

position of the free end of the beaM. Always try to "sight" along the pointer
in the same way. Make your position reading to the nearest tenth of a centi-
m et e:v

You should'record your data in an orderly fashion. Along -with the load

values and the position readings you should record such things as the type of
beem used and its length, i.e., that part which outward fro= the table
top to the load point. In reocr'di=g toe pcsi:ion of the and of the bee= that

is associated -with each load, a tat___- arranzenent will have the nos'.' =eanfng.

For example, yo... could nc Lahel tw: oc*...r_Ts for data, one col= yttn the
heading, "lead r in and :he other, "Positicr. inc=". :f you Irish

to =ake pore than toe trial r..cl on Leading the beem, you will new =ore than

one col= in yo'' tahle for :he pea: tic= :f the pointer. (Table 1.)

THT ICAD7r 7,FAM 717'717-1.4.EN:

Tyfel 1
Loei Position

,

Cgre=s) oenti=eters

length 6? bea=

Position

centir.-s)

f

Trial 3.

Position

,cene-ersf )

0

0
6c

e , Table 1

*.

Now go badk and run thr.'c-u.gh the experiment again. This tine start ylth

a 60-gram =ass and continue by adding 10 grams each tine until you have at

least ten readings. Record :hese readings in a new data table a put this

table aside for later reference in Section 2.l.

2.2 Graphdn the Exteri=ental Points

It Ire now-exa=d-e _le data :e see that cur table pairs up a certain

3,6



value for the position (p) of the end of the beam with a certain value ( ) of

the load. The table shows that there is a certain relationship between 'the

load and the position of the end of the beam. The value we -015t-ain for the

phosition of the end of the beam depends on the load that we hang on the end

of the beam. In other words, our data is a set of ordered Pairs. As we have

seen tefore,ye can represent ordered pairs of numbers by using coordinate

paper: In doing the experiment, we have decided what loads to hang from the

beam. The resulting position- of the' end of the beam has depended on this load.

The general practice is to make,the first element of the ordered' Pair, the

---"--messure,that-we'controlled.
Thus, for this experiment, the first element in

the ordered pairs Hill be the load value, and the second element will be the

position reading associated with this load value. Our ordered pairs become

(1, P) pairs- It will be,helpful to label the horizontal axis the "i" axis

(load) and the vertical axis the "p" axis (position).

A sample of the ordered pairs Nhich you might get from this experiment

could look like this: (0; 20.0) (30,420.5) (1:70, 22.0). (300, 211..0). We

vent froth an unloaded beam to a
beam supporting a load of 300 grams. At the

same tine, the pointer only moved fram the 20 cm mark to the 214, cm mark.

We are going to use the graph of these ordered pairs to help us make

- *
dedisions about the behavior of the bending beam. In order for the graph to

give a good picture of the actual experiment, appropriate scales should be

chosen for both axes. In this particular case, the horizontal scale should

go from 0 to 300 while the vertical scale extends from 0 to 25. Once the

data is plotted, you probably will have something, which looks like Figure 2.

.

25 r
(cm) 1

0

O
o

° 0 )
0 0

1

O 0 I

0

Figure 2
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V

4.

The only section of the coordinate
plane which is of.interest'to us isthat enclosed by the dotted line in Figure 2. We can make even greater useof the coordinate paper if we use only that part of the graph enclosed by thedotted lines.

"-ThelibriTorittil algrvertiCal 'lines drawn on the graph paper are calledscales. These scales are not necessarily the axes of the coordinate plane.In Figure 3, the horizontal scale is a line above and
parallel'to the hori-zontal axis. The vertical scale, however, is part of the vertical axis. The- intersection of these two

dinates are (0, 20).
25

4

(cm)

26

scales is not the origin but the point whose coor-

O
O

O
o

. o 0
O 0

0,20)

Figure 3 (

.

300 f (gi)

Whenever you plot data, you should follow,a method similar to the onejust discussed. It is not necessary to draw two
or moreNseparate graphs todo so, of cprse. Examine your data to decide upon.a good scale to use for.your graph. Decide just where the graph falls In relation to the entire

coordinate plane. Use only this part of the, entire plane for your graph ofthe data.

2.3 Connecting Plotted Points

Once the scales have,been set and the data plotted, we have the problem
of intetvreting the meaning of the space

$
between these points. Examine theset of points you have just plotted.

Does their arrangement
suggest anythingesee

to youft Suppose that during the experiment more load-position fieadings weremade., Ii" we had increased the load by one-tenth of'a gram each time, insteadof by 30 grams, we would .find a new position
reading for each load.,

Actually reading the change in position for such a-small load change may be
difficult, but the fact that there will be a change should be obvious. We

, ,
lenaw.have to decide how the position of the end of the beam would, vary with

.
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changing load. The variation is probably quite regular each time the load

is increased. Let us guess that'the position would change only h.alf as much

if thb increase in load were 15 grams instead of 30 grams. There is no

reason to suppose that a regular change of position would 1221 occur between

these points. Our first guess, for a model of the behavi'or of the end of

. .
the beam with changing load, would then be to join our experiment4,points

with straight line segments. This procedurre will give us something like the

'graph shown in Figure 4.

2.4 The Best'Line

Figure 4

This method of joining our experimental points is perhaps not.the best

model we can construct. When we say that the beam behaves exactly like our

experimental points, we are saying that our dings are exact. Can you

think of any errors in your data This graph is plso the result of a single

trial of the experiment. The errors which can occur may be greet enough to

make this model meaningless. For this reason, scientists and mathematiltians

do not like to draw conclusions on the results of a single trial.

If we were to repeat the- experiment a number of times and graph each

set of data on the same sheet of coordinate paper, you would probably arrive

at a figure like that shown in Figure 5. This figure shows us something about

our ability to reproduce the experiment. (Do we obtain ",about" the same

ordered pairs a second and third time?) It also suggests that the "spread"

of the plotted points may be due to certain inaccuracies involved in the

measurements, either in the load value, the position velue, or both. Perhaps
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Figure 5

at least two classes of error

the plotted "points" should not

be pants at all, but small areas.

This-last statement illustrates

that measuring instruments are

not perfect. In fact, instruments

designed to measure the same thing,

may differ among themselves. The

new ordered pairs that we get when

we "reproduce the - experiment" point

out that a single person may get

different results even when using

the same instruments for making t
repeated measurements.

We can sum upthe preceding

ciscussion by saying that there are

that must be considered when9We make any

sort of measurements, namely, instrumental errors and human errors. We can

cut down the magnitude of these errors by making our instruments as accurate

as possible, and then by using them as carefully as we can. However, we can-

not eliminate the errors completely. Therefore, we should keep their existence

in mind as we interpret the results of our measurements,;, In this way) we can

usually see what fundamental relations there are between quantities, in spite

of unavoidable errors.

°What we are calling fundamental relations are the results ewe would pre-

dict if we could be sure no errors in,measurement had been introduced. Let

us call an experiment.which introdyes na'error an ideal exprilment.. We are

led to the cqnclusion that the results.of an actual experiment, and:the results

of an ideal experiment using perfect equipment and exact measurements' are two

entirely different situations. In our experiment we have a, relationship be-
.

tween position-and,load in the form of a data tabie and in the form of a

graph. What we desire now is a "physical mddel"to explain the behavior of
.

the beam... The data from each trial, 'and the braid arrangement of the data,

as Shown in Figilre 5, seem to suggest a straight linel.;°YOu may not be able,to'

find a straight-line which will connect alithe pOintsfor any one trial, but

with a little practice, you should be able to rind a line which seems.to "best"

represent all Of-the data. This "bestvtraight line" will be our physical

model of a relation we'have "guessed". This line repreSents our model of an

ideal experiment,

48



Once we have decided to depart from _the experidlental "facts" and draw

a !single straight line to represent,ourdata, we have a graph similar to

that in Figure 6. This graph gives a pictorial relation of lo and position.

Our problem now is to find a mathematical representation of this

We now have a relation between load and position in terms of recorded data

and a graph of this data. °We.have also formed a physical model to represent

an ideal experiment suggested by this data. We now want to obtain a mathema-
,

tidal model which will describe the position of the end of the beam in terms

of load. This is our third step in the analysis of the experiment.

P,In comparing the physical model

you have constructed with those of

other students, you may notice that

different groups of students willThave

graphs which start at different-points,

or differ in theirpteepness",, or both.

Can you think of any reason for these,

differences? Check your data. Recall

how much of the beam extended out -from

relation.

4
the table edges. Did Tech student

have the beam extend out from the

tab; edge by the same amount? Was

Figure 6 the beam you used exactly like the

beam used by other students? What was

your reading when there was no load on the beam?your "zero" reading, i.e.,

1.

Exercise 1

Referring to your final graph of load- position pairs for the load

beam, is the horizontal- scaler drawn aldng the horizontal axis? s the

verticalscale drawn along the vertical axis?

2. Give agood reason why coordinate axes do not always appear on our
7

Coordinate paper.

3. On a sheet of coordinate paper, draw horizontal and vertical axes with

the origin at the lower left-hand corner. Number the horizontal axis

from 0 to 200. Number the vertical axis,from 0 to 10. Plot the follow-
)

ing set of ordered pairs relating 'temperature and time;

((160, 8.0), (170, 8.6), (180, 9.1), (190, 9.4), -(200, 9.9))

!-1



4. Make a nefgfarb of the points of Exercise 3 in such a way that the
. .

graph nearly "fills" the coordinate paper. Label both the horizontal

and vertical scales.
44

5. Draw your "best" straight 1 ne through:the points plotted in Ekercise 4.-

Why do some of the points fill off the line?

If the horizontal °coordinat s are the temperatures ofan.iron rod in

degrees' Centigr&de, and the
Ibertical

coordinates are the corresponding .

times in'Minutes, is the draWing of the Line Justified? a

6. Referring to the exercise above, what is the time correspohding to a

temperature of 165°C? Wheii is the temperature corresponding to a time

of 9.3 minutes?

7. For each of the following, plot the points whose coordinates are given,

and then draw.what you judge to be the best line. Wead,the y-value of

the point at which your line crosses the y-axis and compare the results -'

with your classmates.

(a)% (15, 17.5), (25,20.0), (45, 27.5), (55. 30.0)

(75, 37.5), (8o, 4o.o); (100,,45.0), (120, 50.0),

(125, 52.5), 1 ,135, 57.5), (16o, 65.o)

(b) (0.2, 12':5), (0.4, 12.0), (1.0,*11.0),'(1.4,

(1.8, 9.5), (28, 7.5), (3.6, 6.o), *(1rza.1.,4.5),

(5.2, 3.o), (5;8, 15)

(c) (0, 0), kl, 5), (2, 9), (5, 1 ) (6, 22), (8, 29),

, 34), '4.0, 37) ,

(d) (15o, 33), (300, 31), (50, 31), (600, 32), (750, 31),v(900# 34),

(1650,' 33), (1250, 32), (1300, 36)4.(15oo 33),. (165o,'32) .

A

2.5 slope

'
-1,.

> i ,

II.,- i
,
, 9'

;1 '
You may recall from your study of the number line that the disSipee.

A. frqm one point to mother is the coordinate of the one point minus the,:cpoi-, - 1,.

. .
dinate of the other. For example, the distance between the points whisel° .0.

1 .
.

;

coordinates are 2 and-7 is 7 .... 2
Ise 7 - 2 = 5

I .
,

Or 5. If the point; are not onilliiiki,li ,,,,

0 1 2 ,3 4 5 , 6 7 8 9 the numigpr line, but. points Ont.-

the coordinate plahe, the question of/

Y _Figure 7 ,finding 'the distance betweenithese

'5

5 0 C

4



points becomes much more

are not too difficult to

the two Points is either

the points is again only

Other.

of a

this

,(
complicated

de ermine.

horizontal

. There are some cases, however, which

If the straight line, which connects

or vertical then the distance between

the matter of.subtracting one coordinate freer-ari

We will first consider the case/o 'a horizontal line. If every point

line on the coordinate plane hap the same second element, then we.deftne
;

to be a horizontal-line.,2Theline illustrated in Figure 8 is an example.

of aliorizontal line. What, is

=4

(1,2) (3,2) (7,2)

d ered

For

.

Figure -8,

the. distance between `the two

points whose coordinates are

(3,2) and (7,, 2)? Let. us define

the distance between two points

on aporizontal line as,the,first

-element-of One ordered pair sUb-

tracted, from the first element

of the other ordered pairhat

7 - 3. Therefore, in this ex-

ample; the distance between the

two points is 4.

a vertical we shall follow ;a similar procedure. If the or-

pairs describing the points of a line on the coordinate plane all have

the same first element, then, we define this line as a vertical line.

tance between,any two points'on a. vertical line

ordered pair subtracted from the second element

It follows, then,,theitheAg_tance between the

5 s- 1 = 4

Figure 9

The dis-

is the second element of one

of the other ordered pair.

point whose coordinates are

(3,1) andi(3,5) is 5 - 1 or 4.

If t o points have coordinates

s*Utb that the first e;ementg'6I

each are different and the second

elements are also different than

the line drawn through these

points is neither horizontal nor:

(3,1)
vertical. The ordered pairs (2,3)

, and (7,.4) determine'tsuch a line.

As we scan this line (Figure 10)

from left to 116t, we notice that

slopes 11.( We might ask, at



4

1.4

K-)

I

0

e.

el°

(7,4),

1

this time, if there is any way-to

comparethe,"steepness" of -the

slO;le of'such lines which are ,

neither horizontal nor vertical.

Before we actually answer

' this question, let us look.

at the line drawn in Figure 10.

If we draw a horizon:41 line .

through the point whose coordinates

are (2, 3) a vertical ,line

"1"-thrgugh the other point (7,44),:,we

have two new lines which intersect

at a new point. This point is a

point of a vertical line which

(7,4)
By definition of a vertical line,

7,31 the horizontal coordinate of this

new point is 7. The point is also

a point of.a horizontal line, which,

by definition, must have a vertical

coordinate of 3: Therefore, the

coordinates of this new point are

(7,3)+

passes-through"the point (7, 4).

Figure 11

The distance, on the vertical line, between the points (7,4) and (7,3)

is 4 - 3 = 1. This vertical distance is often referred to as "rise. The

distance, on the horizontal line, between the points (2,3) and (3,3) is

7,- 2 =5. This horizontal distance is referred to as "rdn"*The ratio,

of the "rise" to the "run" is called th slope of the line. The slope of the;

line'in this example is
1
5. .

For a straight line the ;`steepness" is the same along the total length

of the line and the slope will be the same between any two ants we might

pict The letter m is usualliaused for the slope. Thus, Or'Et straight line

vrehave

rise
m = - a constant.

run

We note that in finding the rise, we subtracted 3 from 4. These numbers

were the second elements of the original ordered pairs which we used to find

4.4
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the line. The-run'lwas determined by subtracting 2 from 7. These numbers

were the first elements of the original ordered pairs. From this it appears

that it is not actually necessary to draw in the horizontal and vertical

lines through the points in order to find the,slope of the line.

The slope of a like through'thepoints whose coordinates are (a,b) and '

.(c,d), where the second, point is to the right and up from the first point is

d - b.
- a

. As we scan this line from left to right, we find that it slopes up.

As an example of this procedure, suppose that tiro poets have the coor-

dinates (8,18) and (16,28). (Figure 12.) The rise will be 2 - 18 and -the

run 16 - 8. The slope of this line will thei be

28 7,18 10 5
3.6 - 8--

24

20 .

16

12

,8

16 28)

1

(8,18)

4

0 2 4 6 8 10 12 14 16 18 '

11 Which of the following two

a vertical line and a line

Figure 12

Exercise 2

ordiKed pairs determine'a horizontal line,
16%

Which'is neither.

(b)

(c)

(d)

(e)

(3, 2),

(0, 0),

(10,-4),

(5, 6),

(2, 8),

(5,

(7,

(4,

(6,

(4,

2)

0)

10)

7)

8)

(f)

(g)

(h)

(1)

,(J)

(2,3), (2, 2)-

(561, 10), (562,

(3, 14), (6, 28)

(9, 8), (9, 1)

(Q,8), (0, 5)

11)

% 45
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2.

0

For, each .of the following two ordered pairs state the ride and the
run, for the line determined by these points.

-.(a) 5), (4, 8) -(f) ('763, 763), (25, 25) 4
(b) (3,'9)(2, 1): (g) (8, 7), .(2, 5)
(c) (8.5, 7); (9, 9) (h) (8, 10), (0, 10)
(d) (20, 10), (25, 17) (1) (3.7, 12.6), (5.2, 13.1)
(e) (5, 3), (5,4986)

6) Si, i), (i, -1e-)

3. Determine the slope of the

Problem 2.

line
0>

connecting the points in each part of

2.6 Equation of a Straight Line - Sloe-Intercept Form

The starting point of the graph of the loaded beam relation may have
differed from group to group. This is the point where the line intersects the
vertical. axis . Thus, the "horizontal" coordinate

of ,this point will be' Zero.
We know that the:ratio of the rise to the run (the slope) will be' the same T

for 2,a, two points on the line. if we know the value of the, s.14-Of a Tine
and select the point at which the line intersects the vertical axis with
coordinates (0, b) as the first point,- then; for any arbitrary econd pint
with coordinatev'( , p) we ha7V*

) p - b
m

Since i - 0 is the game number as,' ,-we could rewrite this statement b - m.
Multiplying both sides of this expression by we get'

X = m1)

4-But A is the same ,as 1, so we can again rewrite to get.

and finally

p - b =

p = m + b.

Every straight line, except a vertical line, can be given an equation
of this form. The equation, ,

p =Am G + b

was derived from, our definition of slope and the statement that, all portions
:.of the line have the same slope. If we look,more carefully at the derivation
of this' equatiOri, you'will recall that we began with two ordered,,pairs, one
of which,was,Of the form (0, b). This point has a special significance. This

. is a pOlift, ,ci the vertical axis. Since we have already said. that this 14ne

-7
46
4,-

.

I',



cannot 0 a'vertical line, we know that it can cross the Vertical axis-in

exactly One point Whode coordinates are (0, h). This point is referred to as

the intercept. Looking again at the equation in this form, we note that the

factor ni is the slope of the line and the term b is the intercept. Hence,

this form of the equation of a straight line is called the "slope-intercept"

form of the equation.

In Figure 12, we determined that the value,of the slope of the line was

From the figure we see that the coordinates oi'the vertical intercept are

(0, 8) and

and the equation of this line is

Pi 1 +8

With this equation we can predict position of. the pointer for any given load.

What position would you predict for a load of 16? In this case,

or

tip = i(16) + 8

p .= 5(4) + 8 .28.

The graph did have an ordered pair (16, 28) and we\pe that this equation does

-give us a method for finding ordered pairs that are the coordinates of points

on the line,

If we refer back to the set of ordered pairs presented in Section 2.2,

we, can derive an equation for the graph of the best line determined by thes4

ordered pairs. Graphing these,ordered pairs ((0, 20.0), (30, 20.5),

(150, 22.0), and (300, 24.0 and drawing the "best line" would probably give

a graph like that in Figure 13 The ordered pair (30, 20.5) fails just off

the line and we might Justify this

24 on the basis that the second element

of each ordered pair was measured to

23 the nearest 0.5. In this case the in-

tercept'is 20 and the slop is

24 - 20 4 1
---- car HenCe300 - 0 300 '

b = 20

21
1

and in = so the-e 'on of our "fiat
75

. line" is p = 0.
75

0 30 150 We now have.a mathematical

model vhich can be 1.az. If we in-

22

-4

V..

20

t.

300

sert

.

,Figure 13

47 :"
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equation we can now calculate a corresponding p6sition 'value. If we calculate

position values for loads which were used in the expeilinent, we can find how,

closely our model agrees with our actual observations'. Moreover, we can use
1 .

this model 'to predict position values for loads whicA were not actually used

in the experiment. Try this. Pick a load not previously used but in between

the extreme values. Use your equation to predict :she position cf the end of

the beam, and then find the position for this
A
load xperinentally. Do the

predicted and observed values tend to agree?

Can we also

outside the range

use this equation to predict deflection readings for loads

used? We have to be careful in using this process. The

equation seems to give us values for the position cf t

upward.' bending, and, for

he end of the iheam for

loads which far exceed the "'creaking point" of cur

beam. Thus our equation must.

,terval from 0 to 300.

We have now achieved Ihe

be 7 to val-es whIch are :n the in-

aim of s-h-e- exne.-n.,,.t. We have learned hww tc

and hcw to Ise` ate ax ctserve Cthose which

We fox-iii tlieerelation ce .een load PCS

*and a -graph of the data. We th= :lade a

physical model of the experiment by represeiltir.g the data as a "best" straight

investigate the possible variables

are of particular interest to ui.

tion both in termNof tabular_ data

line. Finally, we found a mathematical representation cf this physical model.

In future experintnts we will use these ,concepts again and develop new tech-
-.

niques, both experimental and math7atical, to help explain cur physicaf

surroundings.

1.

aercise

Tabulatethl coordinates of the 10

points P,-Q- and-R, shown 1, the

accompanying graph. Calculate

slope of 1/line using' the
.

points P and Q. Do the same

for points-P. and R and egafn,

fOr oints Q sand R.

the. 8

6

2. / 'Referring to Figure 14, 'what are

the slopes and vertical ax4 s in-

tercepts of lines /2, 3, and

4

t)

8.

2

0

BMW A
BREMEN

EVIREENEFFPNOM=
MENEEillaWNW'ppri.- ERE

2. .4 .6 C,

Figure 1/:.

t
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3. , Find the slope and intercept of
lines /5 16 (Figu-re, 1.5)
'4, What -do you need to about a
line to distinguish it frc= any
other line?

.5, if Write the e.Citiatchs for the linen
L., 121 1. 1,

and /6 show:: in Figures

. 2
6. In th e

..-tat is the si.F....-if:ce.:nce of the
*0,rticir. axis :r_terce:r: that yr.r.:
cl:talned? Wc.:.la --a d:ifferezt
ir.tercezt nave glven a

ferent sInpe?
I.

2.7 la:az:link linear tIcr.s

"I'll"
INERMIE

M-dIMIENO111 ,
qt,

Figure 15.

4

We have se er_ t2.-atslc7.4a :_s`a very important concept in discussing the'
::_esCr:pti.= of e, 'We ha ye defined the slope of a.2..ine by.

using the cocrilr_ates of rlistir,et points on the line. The ts.lope of a
---ne coes no Elepea-a on the tart ic:ular pe.1- of pcfr.ti used to detezmine

the line, nor on the re1ativ.e of these t---c point's. The ex=ples be-
1c - rev: the -Jar-- o..s pcs its cursed here. Each of the el=ples 44

shous a general situat:icn and spectftc ecc=ple.

Exerz7,:e ? r.ryint. is- 'eh:6'7e and to the right pf (f4rst
.

me,

6-

- 6 - 2
5 -
4

=
. 4

a

" Wire' 16

The slope is pos;itive..7:::r.e 14.e risesas e proc eed- fran left7 to right.

F.



P
2 have the same vertical coordinate.

r2
2 - 2

0
3

(?4) (4,2)- = 0

Figure 17

The slope is zero: _!seine is horizontal.

-9

Examrn le 3. F amd P
2

have the sane horizontal coordinate.

ti

'2

,e

.

4
.

. 'The slope i% undefined: The line is vertical.. %

? ,. .

Our discussion of slope has ignored-one,gefteral situation that msy.de-
'

. a .
velop. That is Ida& P2 is belov-and to the right of.?1,0 asIthown, in Figure 19...

,

.

. , .

we

41.

@Mb

(3,3)

3' -

3 3
2

undefined
-

.

Figure 18
1

. 4' 9

F
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yewill reserve discussion

'-yre nay su=mar're the

I'

%,471,ciF

Ffgure 19

o' ,this situation for a later course.

preceding resulth as follows.

> 0, the lihe rises to the right.

.n =0, the line is horizontal.

is undefined, the line is vertical.

We have seen in the lodded bean experiment that we can derive the equa-

tion of a straight line fro4 the graph by using the concept of slope and the

coordinates of the point at which the line intersects the vertical axis. Now

' let Us'see how the Slone and vertical intercept can. help us to draw fides.

Suppose a line has slope
2

and a vertical intercept whose coordinates are

(0, 6). Let.us draw the line as we/i.as write its eqUatiqp. To draw the

graph, we start'at the intercept (0, 8). Then we use the 4oFe to locate

*other points om the ice. The fACt that the sl e is positiye t1.11A us that

die 4.-1.11rf. e. .as we go to the right, and m 2
cber tells- us how

'fast" the line rises. Bereen two certain points on the line, tiie vertical

change will be two units "up" for a horitontal change of three'to the "right ".-
tal

If:we take the point which' we know is on the line, (0, 6), as one of the two.

can- find another point '3 units. to the right and 2 Units up. We

"cap repeat this Process as often as we wish, and quickly get several points

thr 'which we may draw the line. (Figure 20,)

4

51
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*

Since we now have m = and b = 6, we may write the equation of the
2

line as y = x 6.
3

Exercise 4

1. Calculate the slopes of lines 2
2'

and /3 in the accompanying
,

;figure Using in each case thettwO points'indicated on the lines.

3

111111111111RWINIIIIIII

11111111E211111111111
1111111111EMMENEIMI
IP121111111,11111111111
1111111111,1111IIMIEMIL

2. What, is the 1.ope of a horizontal axis? A vertical axisf^'

3: With reference to a set of coordinate axes, select the point

through this point

1

3) and

(a) draw the line whose slope is What is an equation of this line?

(b) draw the line through (6, 3) which has aslope of zero. What is a n

equation of this line?

52
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.

4. Eraw the following lines.

(10 a line through the point (1,5) with slope .

(b) a line through the point (2,1) mithhopei%

(c) 8 line through the point (3,4) with slope 0 .'

e

(d) a line through the point (4,3) with slope 2 .

(e) a line through the point (3,4) with slope undefined,. (What

type of line has no defined slope?)

5. Consider.the line containing the points (2,3) and (9,5). Which of

the following points is on this line? (Hint: First determine the

Slope of the line containing the points (2,3) and (9,5).)

(a) (30,11) (d) (23,9)

(b) (7,4) (e) (19,58)

(c) (22,9) (f) (18,19)

6. Write.an equation of each of the following lines.
2

3

.

(a) The slope is and the y -intercept number is 2. (The y-intercept'num

ber is the vertical coordinate of the point at which the line crosses

(1- the.vertic5,1. axis. In this"case, the coordinates of the intercept

( Vr
,

are (0, ). )

(b)" The slope is and the y=intercept number is 0.

(d) The,slope is
3 3
and the Y.-intercept number is .11

The slope is 37 andthe y-intercept number is 5.

7.. What is the slope of-the line containing the points (0,0) and (3,4)?

.

What is the y-interceptnumber? Write the equation of the line.

8. Verity'that the slope of the line which contains the points (0,5) and

(k13!ris 1. If (x,y) is aqpoint on this same line, the slope could

be written as

AtICY 5

13
Or M =

X - 8X 7 0

'Show that both expressions! for the slope give the same equation for

the line.
4 ,--r

Write the equations of the lines through the following pairs of points.

Use the method of Problem 8. ,,---

(a) (0,3) and (5,12) (e) (340) and (6,3)

(V (5,8) and (0,4) (f) and (5,3),(3,3)

(c) -(0,2) and (3,7) ,(g) (3,3) and (3,5)

(a) ,(5,8) and (0,6) (h) (4,2) and (3,1)

53 61
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2.8 Relations and Functions

In the experiment vhiCh we performed, we collected a series of order

pairt. In each of these ordered pairs; we noted a given. load and a wing
.position of the beam. We might haves thought of a set of ordered pa

(position of the beam; load), bid in order to avoid confusion, we must,always

agree to state our ordered pairs in the same order. We consider load as the

first element and position the second element of this set of ordered pairs.
.$

However, a singleordered pair does not tell'us very much. In fact, in

order7to get the'comilete picture, the mathematician and the scientist would

,prefer to have the total set of ordered pairs.
,

Any set of ordered pairs will be called a relation. The set of all

first elements of the ordered pairEi in any relation is called the doiain of

the relation. The set of second elements is called the range of the relation.

can say that a relation matches each element of its domain to one or more

e ments of'fts range. In the experiment with the loaded beam, the domain

of the relation was the set of all possible loads while the range of the

relation was the set of all possible positions of the pointer.

In Figure,21, we have a graph of a set of'ordered ',airs. This graph

displays every ordered pair(5,5)

4

(0,0)

Figure 21

(10,0)

5,54

of the set and, hence, is a

.pictorial representation of

a relation. If We cheek all

the ordered pairs of this

relation, we note that the

first elements of these ordered

pairs ean-be-9ply real numbers

from 0 through 10. This is the

domain of the relation. The

'second elements of the ordered

pairs are real numbers from 0

through 5, which is the range

of the relation. The domain of

the relation which is indicated

along the horizontal axis Is
A

sometimes emphasized by the use

of a heavy line, as in Figure 22.

Range is indicated along the ver-

tical exis'and may also be em-
f

phasizpd with a heavy dark line.

r
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1

If we look at the relation in the erperimeht a little More critically,

weorill notice that it has some special,properties. One of the properties

leads us to predict that each time we load the beam in exactly the same way

we will always expect to get exactly the.same amount of bending. What doe's

this mean in terms of our relation?, aimoly this,- each load results in a

single definite bending of the beam. Any time we have a relation which

matches each element of the domain with exactly one element of the range, we

give it a special name. We call this type of relation a function. Noy then,

to summarize what we have just said: a function is a set of ordered pairs

such that each element of'the domain appears in one and only one ordered pair.
4.-

,

4

Figure 13 gives a pictorial display of the ordered pairs which we pre-,.

dieted for this functiOn. These were taken from experimental data. Again

we emphasize the domain of the function Which is indicated along the hori-

zontal axis with a heavy line. In a similar manner, we can emphasize the

range which is indicated along the vertical axis. (See Figure 23.)

24

Domain

Figure 23
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Exercise 2

In Problems ). through 5

(a) Graph the ordered pairs given below, state the domain and the

,,

range and tell if the relation iins a function. ,

9

(b) In each case form a new relation by enterchOging the first and
si

Second elements of the ordered pairs. Graph this relation, (,,,l'

state the domain and range and tell if it is a function. \,.. )1

Example: Given R = ((0, 0), New Relation: i,

i.

(1', 2), (2, 4), (3, 6)) s = ((0, 0), (2, 1), (4, 2), (6, 3))

6

5

3

2

1

.1)

0 1 2 3 4 5 6

domain (0,. 1, 2, 3)

range (0, 2,4, 6)

:relation is,a function

1. M 4 ((2),0), (2,

2. N 0), (1,

. 3. P = 4),

((5, 3), (8,

° T = (0, 2), (1,

6

4

3

2 '

new domain (0, 4, 6)

new range (0, 1) 2,,3)

new relation is a function

4), (2,

3), (5,

2), (1,

3),(11,.

1), (1,

5),

5),

1),

3),

3),

(2, 6))

(9, 3), (10, 0))

(2, t), (4, -0)

C14, 3), (17,3))

(4, 0), (4, 4))

Cf
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6. 1Which of, the graphs of the relations

'4-fanction?

Example:

shown below are graphsfof a

(1) function (2) not a function (3) not a function

(a)

(a)

(b)
(c)

r

(h)

a

576,5

r

(f)

a



7. In the loaded beam expeilment the data in the table forms a relation.

(a) What are the,domain and the,range of this.relation?

.(b) Is this relation a function?

8. Does the "best straight line" desclibe NUnction?

9. ,Are the domain and range of the "best straight line" relation the same

as the domain and range of the,"data relation"? ,INplain. a

10. Are the domain and range of the equation found to represent the "best

straight line" the same as the domain and range of the best straight

line relation?

2:9 The Falling Wiere

This experiment continues ou 'discussion of linear functions. We will

encounter man;t_of the concepts learned in the previous section. In addition,

we will extend our knowledge of linear functions.

You may have learned in your study of science that all bodies take the
- -

same.time to fall any given distance in a vacuum. You know, however, that

andron ball and a feather dropped at the same time from the'time height will

not reach the floor at the same time. Unless we drop objects in a vacuum,

these objects always encounter some form of resistance from the medium through

which.the object falls. In a medium such as air or water this resistance is

,
,not. with increasing speed. Eventually a point is

""reached when the upward resistive force equals the downward gravitational

on the object. rr9m this point on the obJ .ect *ill fall at aconstant

toeech This speed is called the terminal velocity. A man jumping frahira

plane will reach a terminal velocity. of about 120 miles per hour. A "sky

diver" with proper control of his body can lower this figure to about 50 miles

per hour. An opened parachute encounters a much greater resistance and lowers

onels terminal velocity to a point of relative safety, about 20 miles per hour.
, A -

To investigate the phenomenon of terminal velocity, a small ball-bearing

is alloted to 11 through a thick fluid (Karo syrup). The ball-bearing will

reach itsftermina velocity in the first few millimeters and then the ball

will continue to f 11 at,a constant speed.

As in all experiments, we now have to thinly of all"the possible condi-

tions we are likely to meet, and decide how.to handle them., Sinceour,inves7,

. tigation will center around the speed at which .61;te ball falls through the syrup,

58
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) we-)3Ne,t-de4ermine those which influence this speed.

To.ktedt the influence of the size'of the object upon the termilpl vel-

ocity, we can drop ball bearings of different sies into containers of the

same size and shhpe, all filled with the same kind of liquid.

To test the effect of the jar upon the speed of the falling ball, we

can drop the same ball-in different size containers filled with the same type

of liquid.

To test the influence of the liquid itself, we can drop ball-bearings

of"the game size into containers of the same size and shape blat filled with
.

different liquids.
o

If you notice any difference..in the terminal velocity of the ball in
o

any of these situations, then the factor that changed is a variable in which

we sire interested.. Can .you think of any other variables wbich may influence

the experiment? Does the temperature of the liquid influence the speed, of the

ball in the Me way that it affects the speed of the hot fudge moving off the

top of an ice cream sundae?

Once we have our list of-these conditions we must determine an experi-

me- ntal procedure in which we can control. their influence on the terminal vel-

ocity. We will pick one container and one type of liquid and always have the

ball fall in the Name portion of'the jar.

The terminal velocity of the ba owever, cannot be measured directly.

What we must do is to measure the distanq the,ball will fall during some

t?me interval. For example, to find-the speed of an,automobile, we have to

know phe distance traveled and e time taken to travel this distance.

In this experiment we will use metronome as a timing device, thus

providing an audible signal for selected time intervals. In this case we pick

the trine intervals, and the distances covered by the falling object will then

. depend on these time intervals (distance it'a function of time).

To record till position of the ball as it falls through the syrup, fasten-

a thick parer tape to the side of the cylinder with cellophane tape. (See,

Figure 2k..) Drop a bal - gearing into the cylinder so that it falls along the

wallof the cylinder as close to one edge of the tape as possible. ,Since the

velocity of the'ball will be quite small, only a little practice is neededto

follow the path of the ball along the edge of the tape and mark its position

with a pencil.each time you hear the click of the metronome. The metronome

should be adjusted to clidkveVery second. 'Make a mark every other second.

.;
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11 magnet will be necessary

It is not

-first mark is taken

Figure 24

to get -the ball in position along the

edge of the tape bet:pre releasing

it. It is also used to bring. the

ball back to the surface for

fixture trials. You do not have

to mark the path of the ball for

its, ntire fall. Ten position

marks ak at two-second inter-

vals will be sufficient 401, each

trial.

At least four Separate trials

of the experiment, should be made:

using a new tape for'each trial.

Mark the trial number on the -tape

and indicate which end of the tape

was at the top of the cyl nder.

necessary to make the first mark in the same place each time. The,

t6 be the position of the ball at "zero" seconds, the

second mark the position at the end of two seconds, eta.

No.

2.10 The Graph-and the Equation

After completing the four trials,

meter ruler sb that the "zero" time mark

Measure the distance. in millimeterd from

fidithe"Zerdtmark to the second, etc.

all four trials in tabular form and plot

t_ F

1

pe FALLING small/ . TRIAL i
O * 4 ,...;',4,1:,

I -r -1 III ti, itt Tni I
down) 1,..ril.1,,,, IIIII, Ill_ II _11111,1 Ibill! 111111(

O s a is.

fasten each tape in turn to a centi-

coincides with one of the-ruler marks.

the "zero"kmark to the first mark,

(See Figure_25.) ,Record the,datafor

the'resulting time- distance-

Figure 25 '

ordered pairs on a single sheet of000rdinate paper. Since we have conducted

1 '5

U.
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the experiment in such a way that the,distante traveled depends on the time

interval, we will again follow conyentibnal pract4ce and label the horizontal

axis-"time in seconds" and the vertical axis "distance 4n millimeters". Re-
.

lumber to calculate the domain and the range before-setting the scales on the

paper. We,again want the graph to "fill" the paper as much as possible.
5

If you make the "braid" arrangrent discussed in the loaded beam expert.-
, 16

meat, all of the points should' fall in some fairly,narrow band (Figure 26).

_Do you think that if yoki e to repeat the experiment under the same condi-

tions that your new points would

.fail within this band?

We'obtain a band rtlier

- than a line because of the

various errors in measure-.

ment.and the inflqence of

variables 'Other than distance

and time. The details of this

analysts will be resel'Ared for

' .a future course.

There are many Straight

lines we could select to repre-

sent an idealized relationship

between time offall and distance. Figure 26

Draw what yoU conside'r to be the'"best" straight lineto represent the data.

RemeMber to include the (0, 0 point in your line. The manner in which we

performed the experiment tells us that at,"zero" time the ballhas fallen

"zero" distance. Thus, even though thex:e are many lines to choose from,

4.)

Time

every brie of teem sho 11-Vass through the origin.

. -

,have to build apathemetical,model of the physical relation-
..

s ip shown in our,"distance versus time" graph. We cad do this by repeat
t

the procedure'learned in,the loaded beam experiment. The slope should_not be I

difficult to compute at this, stage." We'know that the line must pass througA

. the origin; hence the,coordinates o the "y" intercept are (0, 0).' The equa-

tion which describes the motion of t e falling sphere is'therefore quite simple.
:.4,

Calculate the slope usi ng'an two poi is on the line. Then, using the origin

as the first point, and any bitrary point on youit line with coordinates

(t, d) as your second, we have
S,.

d - 0 d
- m or

t
,-- mt - 0

g
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and

d =

f"-\,
The slope in this experiment hasJa special significance. In calculating

the slope, the vertical distance from the first point to the second is a number

of millimeters while the horizontal difference is a number of seconds. The

slope therefore will-be expressed in millimete per second, and thus is a

measure of the velocity of the tall. Sipce we have foand that, the experiment
w 5

.yields a straight line, the slope, and therefore the velocity, is a constant.

Our initial cents are thus confirmed -- Cy the time webegin taking data

.. the ball has already reached.its terminal velocity and falls at a constant

"_ate.'

re

/

Exercise 6

Reproduce the '"hest straight Line" you have drawm to' represent the data

of this experitent cn a clean sHeet o' coordinate'paper. Take,the four

pieces of paper tape used to mark the position of the ball and arrange

them so that the zero marks are in line (Figure 27). On a clean fifth

tape, =ake a =ark to indicate a "zero" position and align his =ark with

a.

3 1

Figure 27

t

New Tape

Four

Data

* Types

the other zero marks.c The other marks on your tapes will not be "in line",

but should tend to center ip groups about d number of inaginary vertical lines.
Alto,

Make a mark on the clean tapeto indicate your "guess" as to the position

which best represents each vertical set of marks. Using the fifth tape as if

it were a new trial, mark your measurements in the usual way, enter ,the data

in your table, and graph the ordered pairs. Do, these points come closer.to

forming a straight line than any of your four trial runs? How does this line

compare With the "guess:: you made from the "braid" arrangement?,

ti 62
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2. From tree data of your four trial's, find the average distance 'traveled

by the bill'in each time, interval. Make a new coiumn'inNyour table;
st .. ,

"Average Distance (.6m)", and.naw plot average-dAtancerversus time on
. .

the sa4e sheet of coordinate paper used for Exercise 2'. How clot* do

these points come to, forming a straight line? You now have three lines.

on this sheet of coordinate paper.

from your original data, the ecani.is tie line obtained In,Ekereise

and the third line is' the on obtained by the process of waging.

How do these three lines- compare? f

The first is. tae "best straight line"

1,

Draw a graph using a scale of I second for each horizontal division

and 1 mill4r.otee '7a,- each vertical division. Draw a line which pesses

throtzgh the origin and has a.sIbpe of 1:mm/sec; 2_m/sec; and 3 mm/se.
. A

Label these l4nos.

. Repeat the above exercise wit a horizontal scale of I second per divi-

sion but with a vertical dcale of 0.77 millixeter per division. Are the

two slop& the same?

t, 2.11 The Point-Slone Form

When the data from the Loaded Bee: Experiment was plotted on coordinate

paper, a gra:±.. -4-Lch'res=1;;Lec: that in.Figure26a) resulted, and we found

that an equation of the for: y=" b cau3dbe used as a represeiiation of

this graph. In the Falling Sphere

experiment, the graphical repre-

sentation of the data passed

through the origin (Tigure.28(b)),j

and we found that,alitgraphs of

hi this type could be represented

by an equation of the form

y = mx 1 0 since-the graph passed

througivthe origin. A simpler

0,b) form of this equation is y

(a)

Suppose, h6wever, we are to

arriye at a graph which looked

like that in Figure 28 (c). In

,this case, if our domain is limited

to values greater than or equal to



,

A

% ,

r

I.

ow.

Y 1.1 t t

' a, end less than'or equal to c,

we will not have a "Y-intercent".

The slope, however, can still be

- in `she way by. e .0. calculated usual

selecting any two the1 points.ch
--lb

and findimg, the ratio ofgranh

thevertical dis:ance between

these to the horizontalpoints

(b) distance between them. The slope

y

5)

(c)

x

-

__

1

w l

r 1

.4._________,x,y)_

(a,1)

4-

1
1

T itI._ i1- 40 -I

Figare 28

the "point-slope" for= of the ecuatio=

is the same for any two points on

a straight lfne. To chtain the

eq--ation of this ofl-

pon", cf segment which. as

'ecordint(te, :a, b) is tae as

our first point. 'Then for any

arbitrary point with coordinates

(x, y) we have
. _

- m.
x -

.

This is the third of three "special"

forms of the equat'on of a straight
aer

line. This ecuation is known as

of a straight line.

#
Exercise 7

1. Write the equations of the lines / ./
2 ,

pointt indicated in the following graph
y

and 1
3

using the two'

J.', .
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2. Write the eq4ation of the lines Q : and
5

Using the points in-
, 4

dicafed in the followthg graph.

36

34

32

30

28

74'
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1 1
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r 1
IL

1L ;K ,

Am....---

,

1,

,

..4. i
li

i-
'

8 10 12 -.14

1

1

16 18 20 22 24 26 28 /

3. Refer tl your load-positicn graph obtained in the loaded beam experiment.

Using a point not on the 7ertical axis together wtth the slope, find the

equation-to represent the best straight line. S Itliow that this is equiva-

lent the equation obtained, Lsing the slope-intercept form.

State the slope of the graph ofbeach of the following equations. Give

the coordinates of three points on the graph of,each.t,

(a)
- 6

;77-17. 3

X - 3 5

(c) Z2:_71.12

x = 10

(d) 2(2_1_,L
x - 15 3

(e) 5y -= 2x 15

(f) 3x . 5 = y
40"

(g) y = -(x - 2)

(h)
x - 2 _2_

y - 5 10
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2.12 Sulltdary

Inthis chapter, we developed the concept of drawing the graph of the

"bet line" from experimental data. This "best line" graph was called the

physical Model,of the experiment. A mathematical equation, called the

matalmatical model, was then derived from the physical model.

.In this particular chapter linear physical models were discussed. The

slope of a straight line was defined as
rise
run

Three forms of a linear equation were devploped:

(1) Equation of a line passing through the origin,

y = mx.

(2) The slope-intercept roan of the equation of a straight line,

y mx 4- 1;-.

(3) The point-slope form of the equation of a Straight line,

x a
- m for x /

A relation was defined as a set of ordered p rs. The set of. all first

elements of these ordered pairs is the domain of the relation and the set of

all second elements is the range of the relation.

A set of ordered pairs, where each element in the domain appears in

exactly One ordered pair, defines a function.

A

a
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Chapter 3

4.

TRAMPOLINES.AND GASES

3.1 -Introduction
,

4

acter, iSt is possible to compute new data which is of a linearetype.1% The

Many times, even though the data in an experiment is nonlinear in'char-

*fok,

following experiment on the trampoline is an example of this type of exl5eri,

ment.

At one.time or another you mayhave had the opportunity to jump on a
1

trampoline. If so, you know what fun it can be. The 'springiness" of the ..
trampoline permits you to execute flips pnd turns not

I

possible under other

circumstances. The question now is: Do you suppose it would be possible to

make a mathematicaanalysis of your behayioron a trampoline?

As with many other physical situations, this one seems much too difficult

to handle. A person on a trampoline not only boun9es from the canvas, he

usually. at the same time to give his body extra height. He also twists

. his body and swings hiZ arms in a way that will produce the maneuvers he'de-
, .

4.11

sires. All this is extreTe/y complex behavior.
. .

If we are to learn anything at all about a trampoline, we must somehow,,
d.

simplify matters Considerably. Perhaps we could eventually learn about one's

entire behavior on

k
ra4olind through a seriesoof experiments', each one

designed to examine e aspect, and one aspect only, of the entire situation.
1 .

3.2 The Trampoline Experiment

For our purpose a i-inch glass ball (marble) will be dropped on a minia,

ture home-made trampoline. We will carefully examine the way in which the

ball bounces., There will be no flexing of one's legs or flailing of arms

kist a simple bounce, bounce, bounce, ... on the trampoline.

A suitable trampoline is made by stretching d ten- or fifteen-cent bal-

loon with its neck cut off over a9- or 10-inch pie plate. This for a

stretched elastic membrane that serves beautifully as a trampoline for the

glass ball. s'

,

After dropping the ball a few times on the trampoline from a height of.

about 50 cm, the basic behavior of the ball is'clually seen. The ball will

67
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bounce 25,to 30 times before finally coming to rest upon the rubber membrane.

With each bounce the ball will riseto a maximum height that is somewhat less

than the height to which it bounced previously. If this motion were to be

"Stretc* out" sideways on a, flat surFace, it would appear as shown in

Figure 1.

bounce number 0

(point of release)
. "

bounce number

bounce number

bounce number 3

bounce nuMker 4

-A.

Figure 1. Path of a bouncing ball

Even with the trampoline situation simplified to the pqint of.using a

ball in PIaCe of a human being, the bouncing of the ball is still a rather

complicated affair, The ball picks up speed as it descends, makes a small

dimple in the trampoline as and then flieg upward with ever-dimin-

ishing speed until it'reaches the top of kte-bounce.and begins the sequence

all over again. Affairs can be simplified still further by fixing our atten-

tion only upon 4 maximum height to which the ball ascends with each bounce

411Ple choose to igriere the condition of the ball at all other times.

We have - selected for study a limited part of the entire behavior of the

bouncing ball. TO what maximum height does the ball rise with each bounce?

As before, we will attempt.to list all the variables which might conceivably

influence these heights,.end then permit one and only one of these variables

0'
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to change daring the experiment. Certainly tie height frOMwhich the ball is

dropped will influence the height to which the ball rebounds. The mass and

size of.the'ball,itself may also influence the situation. And then of course

the nature of the rubber membrane and how tightly it is stretched will also

influence the maximum heights to which the ball bounces. Can you think of

any other'influences?

All of the variables mentioned can be kept constant as the ball bounces

,- the height from which the ball is dropped, the size and mass of the ball-

and the condition of the trampoline itself. Andf"Yet under these conditions

the height to which the ball rebounds with each bounce still ginges. What

variable, then, influepces this height? Incase you've missed it up to now,

it is,the number of bounces the ball has taken. In other words, the maximum

height to whicNthe ball rises *kith each, bounce most certainly depends upon

the number of bounces the ball has made.

The experiment can now be designed4in a way -that will permit us to trlak

fairly accurate readings of the maximum height of the ball with each bounce.

This height can be read more easily and accurately by using a shadow of the

ball rather than the ball itself. A 150- or 200-watt bare bulb should be

pladed four to six meters from the trampoline so that the shadow of, the ball

will be cast in a nearly horizontal direction. The bulb should be placed at

a height which is close to the middle of the bounce heights that will be

N' recorded.

The shadow of-the ball will be projectedvn a:white card upon which a

centimeter scale is drawn. The card should(Tepleced directly behind

trampoline. The card should be as .wide as the pie plate and at leash 50 cm

in height. The rulings should be drawn carefully across the entire card for
0.

each centimeter of height. Every fifth fine should be drawn darker for

easy reading,and marked. With this arrangement one should be able to read,

the position of the tdp of the ball's shadow to lam (one-tenth of a division).
-

"The entire experimental arrangement is shown in

4

O .
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Figure

The pie plate must be accurately-level or therballwill bounce off the

trampoline. Three small pieces of modeling clay placed beneath the pie plate

will make this adjustment easier. Place the ball
410
on the trampoline and ,

adjust the pie plate untillthe ball will not roll off in any direction. (A

small bubble level could also be used.) A ring stand equipped with a burette

clamp i6 used for releasing the ball from a height of about 50'cm. Be sure

. 'the clamp .s rubber-covered, and then tighten it until it will just hold the

ball. A slight push will now send it on its way. The position of the clamp

, over the trampoline must be adjusted so ihEh the ball will continue to bounce

from the trampoline for at least ten bounces. Some final leveling of the

pie plate may also be needed.

Now we are ready to record data from the exPerimeni. Label the first

column on your data sheet "bounce number (in)" and tpe second column "height

in cm (h), trial 1". The first recOrded bounce number will be number 0.

Th corresponding liVight wil be the height of the ball at the point from

wh'ch it is released. The initial ,position of the ball is found by observing

t e shadow of the ball when it is st4i6in tbe clamp. Be sure that the ball

is,in the position it Occupies just before it slips out of the'clamp. If \
only the ;bottom of the ball casts a shadow, observe this height and add the

ball's diaMetei'.
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Corresponding to bounce number 1 will be the maximum height of the ball

'"after the first bounce. Make four ob-servations of the height of the first

bounce beforeicontinuingto the height readings of the second bounce. Record

'tliese four trials in columns 2 through 5. Starting with the ball at the same

point of release, now let the ball bounce twice and make four observations of

the second bounce height. Discard data obtained when the ball obviously takes

a bad bounce. Also, do not begin to record data until the approximate height

of rebound is knowil. In this way you will accumulate four readings for each

of 10 bounce numbers (see Figure 3).

Average your four height readings for each of the 10 bounce numbers

and place each average in column 6 of your data sheet. If your centimeter

scale placed behind the trampoline rested upon the desk, you must now sub-
.

tract the height of the trampoline above the desk from each of these averages

(and'from-the release height) to obtain heights above the trampoline membrane.

Place these "corrected heights" in,column 7.

The data function obtained now consists of the ordered pairs displayed

in columns 1 and 7. The first elements of these pairs are the bounce numbers

while the second elements are the maximum heights above the trampoline. Be-

fdre attempting to analyze the situation further, display these points on a

sheet of coordinate paper plotting bounce number (n) along the horizontal

axis and height (h) along the vertical axis. The graph obtained should

appear similarrto the graph shown in Figure 4.
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(3). trial 2 (4),trial 3 (5) trial 4

Average
height

(6) h (7)

CorreCted
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03.3 Functia of 'Integers

The'fuhctiOn displayed
P.

in Figure 1is a physical

model of,the experimental

situation, for'it

ing more than a graph of.

the data function. It re-

mains to find a. suitable

. mathematical model to

represent the trampoline

behavior.

Did you draw a "best

curve" through or`' near` the

points? This may have'be-

come a habit 'arising frpm

past experience.

In many experimental'

situations, the drawing of

a "best line" or curve is

completely justified., In

0

50.

40

. 0

30

ro

to 20

x.
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)
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0

0

'0 1

0
0 41

0

'6 9 101 2 3 4 5 6 7

these cases we could assume Bounce Number°.(n)'

Figure 4
that valuesin the domain .

of.the function could have been selected which would yield corresponding

termediate values in the range of the function.

tsar
The values in the domain of our trampoline function, however, are the

so-called "bounce numbers ". Can we have a bounce number:2.6 for instance,

and will there then be a corresponding maximum height to which the ball bounces'.

Think about this question for a moment, and zefer beck to Figure 1 where

the general behavior, of 'a bouncing ball is indlCated.

Will'you not agree that the peak heights to which the ball bounces from

de trampoline correspond only to the integers, and not to intermediate num-

,erical value's? The domain of our function includes, only the integers 0, 1,

2., 3, , but the range of the function includes positive real numbers

whichare not necessarily integers. "We choose t6 call this kind of rela-

tiOnship a function of integers.
!,

' * If you fell into the trap end drew a "best line" or curve through the

pbints, that line must now be erased,, for it has no significance.
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There are many, examples of functions of integers boNa in everyiay exper-
.

ience.and in formalized-Lphysidal science. In most cases, the integers are

thought of as belonging in the domain of the function, but in certain cases

the range of the function may also be integers. The times of sunrise, sunset,
.

moonrise, and moonset for a given locale are functions of integers (the day'

of the year). The thickness of a book depends upon the number of pages. The

height of a building may be expressed as a function of the number of stories.

ss

EXercise 1

1. Can your graph of bounce number (n) and bounie be used to '

interpolate values of the height for non-integral values of,the bounce

number? Explain.

2. Why can your (rr,h) relation be referred to as a function?

' 3. Do yoa think that the (n,h)'graiAl can be .extended to find values of

the maximum bounce heights for bounce numbers greater than 10? If

so, to what value of n would you be willing to go?

4. Construct a graph that shows roughly the time of sunset for each day.

of this week.

4/
3.4 Mathematical TrE6poline Model

The trampoline function is a function defined for bounce numbers (or

integers) and presents a mathematical situation which differs from previous

situations.' For this reason, the procedures we have used, before may be of

Attie help to us in this situation. We need a new procedure.

As is so often the case, the hints we nged to develop the mathematics

.., of a particular experimental situation can be found from an analysis of the

experiment itself. In this case We need to -eramine the pouncing from
. .

the trampoline to give us clues as_t9\the ma ner, in which the mathematics

..might deVelop. .. .

The ball was fro a fixed height, bounced once, dose to a

2,,, maximum height, bounc d aain rebounded /to mother maximum he ght-,-and so

on. We might well ask thefo lowing question:. What is the physical dis-

tinction between the first.bounce and the second, or between.the second

r

bc9nde anff.the third? -After the ball bounced once, for example, we could
. . .,

have caught the ball at
.

its maximum height and later released it at this
...;

. __
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'same height. This would, in a sense, start ihe experiment) all over again,

the only ,difference being that this time the ball would have been released

at a lower height.

There must, then, be some relation between the height tOVhich

bounces And the height to which it bourIced the time before.: Suppose4that the ik

I- ;

point of release, the size mass of the ball, and the properties of the

trampoline are all held fixed. It then seems reasonable toassume furlher

thatthe height to which the ball bounces depends only upon-the previous

I°important ones. In effect, they constitute a hypothesis about the physical

behavior of the bouncing ball. ,

ounce height and,nothing else. The two preceding statements, are extremely

Our search for a mathematical description of the bouncing ball can now

be concentrated in a singleuairection We seek a relation between successive

bounce heights.

Before pursuing the subject further', it will be helpf,kamto...4..nt,rockkoe..4%
-

some new mathem.sical notation. Call the height to which the ball rises

after bounceAumber the heighf, h
n

The small subscript-Is the bounce

number correspondi4to the height, and serves as a-reminder as to which of

the maximum heights we refer. For example, h
0
is the height_Sorthe zero

th

bohnse (the point of release), h1 is the height corresponding to the ?iist

bounce, hiis the height corresponding to the second bounce, and so on.

The relation we wish to fine ca1tDow be restated using this notation.

We seek the relation between h1 (any maximum bounce height corresponding "

to the bounce n ber n+1) and h (the hht of the previous° bounce). In

other words, the height of the 8th bounce, 118, depends upon'the height of

° the,7th bounce, h7, likewise the height of the 3rd bounce, h3, depends upon
.

the height of the 2nd bounce, h2 For these relations, n = 0, 1, 2, 3, .

....

..., 9
.

. .

. -.,':

Let us summarize the st to of affairp at the moment. We_have already

e .obtained experimente, a r ation between, h
n
-:(the yells in co 7 of

.

.
!

I

Figi4e 3) and n '(the values in column 1 of Figure 3), And this lation, was

' displayed on coordinate piper (Figure 4). -We found it to be a "function of
i

iiitegelT . Now, however, we wish to finda new se of ordered !pairs. The.
,Tlist element is hn and the second element ,is hn.1.1.. For example, if n = 6,'

..t.',Ahen n+1= 7 and h
6

is the height ofthe 6th'bourice and'h
7

is the height of .
'e

.
the 7th bounce. '4e ordered pair (n

n
,h r;.4-1 I) Aid be (h6,h7) in this.example.

, r °

/

.
I

O
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The relations-of.Figure 4 and the ordered pairs (hn,
n+1

) are different,

but both are,part oaf the same over-all problem. The second relation is tide

One indicated by the ordered

t,.., .

*

C4

-

fs shown below,

(h
0'

h
1
)

(h1' h2
)

,(h2,,h3)
-

(113:114)

(h4,115)

(b
5
,b
6

)

('7'x'8)
th8,Y
(h
9'

11

10

since we already have all the first elements in the above relation tabulated

Cin_column 7. All we need to do now is totabulate the second'element in col-.
c

umn 8 of Figure 3. Once this is done, plot, these ten points on a olgan-sheet

of coordinate paper. Plot the itilues of hn along the horizontal axis, and'

the values of hn
+1

along the vertical axis: *AU

. The graph may surpgseqou. Don't you find that these poihts, snowing

for some experimental errors, are arrayed fairly well along a line? A typical

,result,is shown in Figure 5.

20 30 40

Iln(cm)
Figure 5

1 '
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Did you draw a "best straight line" through the points? Perhaps not,

for now you may be a little suspicious of such'sproceddi*: By drawing in

the line we may be suggesting that there areRtaximum bounce heights corres-

bonding to any positive number,' not just: to the integers.

It is true that in our experiment there were eleven h
n
ts and only

eleven, with no heights in between. Looked at more broadly, however, the

,xplation-shown in Fig.:: e- is a relation between bounce eight and the
'A

one preceding it. The height of the preceding bounce could have had any

value, a value that would depend upon the height of the release point for

the ball and tne chTftoteristics of the trampoline surface. Thus tAlrele-'

ments ihATe domain of the relation (the h
n

a ass -nrvglues) cild assc. any value,
e

an responding to this value there would be e corresponding element in

the range of the relation (an

A
"Fillin; in the line", therefore, is a procedUr&that is justified in

this situation. In case you did not di:aw this line be fore, draw it now. Make

sure that 'our best line passes tnrough the origin, for most certainly a

bounce height of zero will produce a zero height on the next bounce.

:Fro:: our best line we obtain the equation

n4-1
= m h

n

where m is 7,1:e measured slope of the line. There is an important physical.

interprevtion of tne slope of this line. If we solve for the slope to
"n-1

obtain m -
hn

, we see that the slope is the ratio pf any maximum bounce

height to the height of the previous bounce. The value of this ratio (slope)

will determine how quickly the successive bounces of the ball from the tram-

poline.will, "die away".

We must remember that in the above equation, thevalue h0 has been

determined by the experimental arrangement. hc, together with m, are the

two constants we need to calculate airy of the bounce hei nts corresponding

to bounce numbers 1, 2, 3, 10"is indi ted below.

0,. hi =mho

h2 = mhi

h
3 2

h = mliO
o9

h mh
10- .9

YI 77
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Each right-hand of an equation is obtained from the right member of the

preceding equatiOn i)y multiplying by.m. The process can be repeated, there-

fore, to give h10:

h,,
"

= mh9 = m(mh8) = m
2
(mh

7
) = m3(mb6) = m

4 -
(mb5) = m5(mh4) = m

6
(mh

3
)

-

r117-(mh2). ra8(d°1) ni9(mh0)

.that-is,' 1113, m10no:

Similarly, we can find all of the ten bounce heights once we know the two . .

constants m,and h
0'

It is easy to see that aoingle equation can be /ritten

'moo obtain b
n+ 1

for any n:

h
n+1

m lh
0

n = 0, 1,(2, , 9 .

To test whether this equation is, in fact, as good as the previous ten equa-

tions, we have 'o set n 9, for example, and find that h = m10 h
Q'

For n =43 we quid h e m4h0 Since n has ten values, we have tenT"

equations.

The proeedure we have used has, turned out in a most interesting way.

We Stirted with the equation h'
n+1

relation between h
n
and h

n 1
. The

different, for it contains bd.'dhe

mh
n

. This equation represents a linear

equation we'have now obtainer is quite

h-value. It is an equation which expresses

the relation between h and h
n,1

. It is certainly not a linear equation. it
(

is the relation that we are seeking from the very beginning. We have,elready
.

graphed the experimental relation betweAn and h
n+1

(Figure 4) and now we
.

at long last, have a mathematical modelthis relation. I

Use the equation h
n+1

m
n+1

h
0

to calculatelnew values of the heights

corresponding to each bounce number and place these in column 9 Of Figure 3.

Nol;' plot these on youl. graph (similar to FigUre 4) and compare the Values

predicted in this waytby our equation with the values obtained experimentally

The two sets of points should agree rather well.
.

IN.44 114 '23.0 cm :
I

Let us assume h3 =27.7 cm and h4 = 23.0 cii, then m - - ------
27.7 cm

0.830 where = means approximately equal. .As a reAllt we may take m ..,$).8.

0 . , ,,.

4 as p Value for computation. Since h0 = 50.0 cm , 1

4

. % .

- h10
(0.8)10kw ,.

0 cm)'

therefore

h
10

1 T0.1)(50.0 cm) where )
fo.0n.10

= 0.1

e,

-11
10

= 5.0 cM (calculated value)
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Only one consideration remains. In the experiment only 10 bounces were

observed. We found'a mathematical expresSion that accurately describes the

bounce heights that were obtained. Will our equation continue to describe

the heights to which the ball ascends,aTter 100 bounces, 1000 bounces, or

dv'en more? One does not have to look'very far to find the answer. The ball

will not continue'to bounce indefinitely. Our equation must at some point

cease to describe-the situation, Physically we can_lay blame olivthe ever-

,Present friction between the ball and the trampoline. The frictional fordes

present bring the bouncing to a stop.

We see that the domain of bounce heights cannot be extended indefinitely-.

The domain ilacludes 10 bounces and no more. A new experiment would'hdVe to

be performed to determine whether our equation properly edicts the behavior .

of the ball for a greater number of bounces.

35 D.cperimental EXtension

Now that an analysis of the trampoline functib been made,-we must

remember t;r,4t,41e entire problem utilized the data obtained with the glass

balll. We have not faced the question as to whether a different type of ball

would give different results. It is most interesting to replace the glass

ball, with a nylon bearing of about the same size and repeat the experiment.

Using the same experimental az-rangement and procedure that wa7used

before, adjust the level of the trampoline so that the nylon bearing will'

continue to bounce from it for at least four or five times when released

from a height of about 50 cm. Retord the data just as you did before, but

on a new data sheet. When you graph the relation between-h
n
and h

n+ 1
this.'

time, however, you will find the slope to be somewhat lower than it was for

the glass ball.

- The slope that is obtained is somehow a characteristic of the ball that

is used, for one value is obtained for the nylon bill and another for the

glass ball. The differente/n behavior for the t o balls is immediately

evident from,the way the bounce on the traMpoline. The glass, ball will

continue to b6unceo verygreat number oftimes (if it doesn't \jump off the

trampoline) compared to t.henumber of bourides for the nylon earing,sj,

Be sure to plot the (n,h) data pairs for the ba on th4 samev
coordinsqe paper used to representt the data for the_nylcin b 11. Can7you:

now anticipate about, where,the points would fall'on this graph when ,,

' 110 ..50 cm and th = 0.4;:.1th evep,th,.
nn " t.

.
: 11;

s. .
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Exercise 2

Referring to-your'graph of the (hh,il) relation, what is the domain

and range of the experimental data? What restrictions, if anywduld you

place upon 101P domain and range of the mathematical equation found tq

r

represent the line?

2. Suppose that
(0.5)n+1,

n+1. "0

Sketch to the same scale a series of (n,h) p8ints for h0 =.10(-50 and-

100.

3 Suppose that

h
n+1

= mn+1 100

Sketch to the same scale a series of (n,h) pOints for m = 0.3, 0.6 and

4: Make a possible interpretation the

hh'4.1 = (0.5)11+1. 100

for the case n = -1 .

5: Why did the domain of the relation

h = m h
n+1

include the value n = 9'and not n =°10 ?

6. What is the physical unit of the quantity m" in the.equation

h
n+1

= mn+1 h o ?

n+1

significance of the equation

4

t'

g, 7. Do you thinkit,would be possible:to find a value of m greater than
..

or equal to 1 ? Explain.

3.6 G -Lusdtc's

Sc entists are often ,prone to s
;

'Mathematicians, on'the other hand;

ment as to do with gases apd gas p essures. The physical

volved is not important for our purposes, butthe mathemat

from an analysis of the eiperiment.is.

ate their discoPeries in terms of "laws".

scover theorems". e present experi7

)

8o

8 9

law that is in-
,

cs that stems

c-;
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The apparatus that will be used to investigate gas pressure is an

extremely simple one. The equipment is shown in Figure 6. It consists

of acopper bulb connected through

asmall pipe:,eO'a pressure guage

at the top. The system wassealed

rgiqf at a time when it contained

ordinary'air at atmospheric pres-

sure. The guage is numbered to

.,read pressure it poudds per square

inch. The pressure reading corres-

ponds to thepressure.of theeir

within the bulb, nothing else,for

this air is completely sealed off

from the outside air.

Whether you already know about

gas pressure or not does net matter.

In' this experiment it will simply

be a number read from the guage.

is

Figure 6

. . If the presslare within the gas enclosed by our apparatus is to be

measured, we must find some way to influence that preleure before we can

learn something of significance. Perhaps we can 'squeeze the copper eham- -

ber. This exterhal pressure might cause the pressure within the geito

' rise. The metal bulb.; however, is a fairly rigid' container and we would

have to damage the bulb"before we could get a measurable preskire-change
.

indicated on the guage. If we were to change the temperature of the gas

-- within the copper, bulb, on the pthertnd, the, change in temperature of

'the vs.might very well change the pressure within the gas. Since copper

is a good conductor of heat, the apparatus seems ideally suited for ebn-

ducting, hea either into or ¢ut of the gas. All we need to do is to
[ '

immerse the bulb pl water. 1hatever the t_emIerature of thej water, the

temperature o8 the gas inside will soon be the same.

hen,/isthe design ear an:experiment. For each temperature of

the gas we will read a correspOnding pressure. WI may find as many ordered
!'

/pairs as we wish and the set we collect will then be a function. It is

convenient tocollect data at'about ten - degree tervals between 0
o
C and

100°C. 'A thermometer placed in the water Barr Luite.ng the bulb measures

thesetemperatures. The "C" stands for "Centigrade" refidings; and the

two extreme temperatures correspond to the freezing and,boifing temperatures,

ivy
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respectively, of water. This procedure gives us ten or eleven ordered pairs

(C,P), that is, Ceritigrade temperature - pressure pairs.
0

` It is important to note that in this experiment, the as is influenced

only by the "t emperature, nothing else For example the volume of the gas

is held consin... oughout. It, would be dgticult to change the volume
- .

, ,

even if we wished t do so. Can you think of other possible influences

O upon the pressure of the gas?

Record the Centigrade .temperatures n the first column of your data
-

sheet-and the corresponding pressure readings in the second. Be sure to

label the pressure column with " unds per square-inch", for this is the
0

unit of pressure.read from the gauge. If you help colpuct the experiment,

be sure to estimate a reading to the Ae est tenth of the smallegt diviston,

both on-tke thermometer and on the pres_ure gauge. If the space between

the smallest diviiionsorthe pressure gauge represents 2 poungs per square...

inch, a tenth of this division wii!l then represent 0.24pounds per square

inch. This tenth's rule is a good "rule-of-thumb" to follow. With prac-

tice you will be able to make readings to the "nearest tenth" in most cases.
4'

Be suspicious, however, of a person who claims to be .able to read more

.closely than this. ,t

As always, we will want to graph our functiOn..before we Attempt to

analyze it further. Sire.the temperature readings areelements in the

domain of the fundtion, and the corresponding collection of pressure

readings constitute ple'range, plot Centigrade temperature along thp hor-
.

izontal scale and pressure in pounds perlsquare inch along the vertical.

scale. ''Select temperaturt and,pressure scales that will makd tle graph

as large as possible. Allowing for some inaccuracies in the data, we

see that the points lie on or near a straight line. When you draw this

'line,.you are assuming that we, might have selected zany tempe xture ir}ter-

mediate e between those tc-ttally taken, and that these would t en determine.

corresponding pressurereadings.

Although the same data'is,used by everyone, the line that you draw

toirepresept the experimental function will most certainly not be the

. same line akthat drawn bly someone else: This 'is as it should be, for

your judgment as CO the ';best" line will differ from his.

The graph of the relation.between temperature and pressure obtained

! will look something- like, the graph shown in Figure 7.

ti
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The' relationship shown has a special name --- Gay-Lussae.s taw...lin words

it canbe stated as follows: For a gas held at-constant volume, the

pressure of the gas varies linearly with the temperature.

Mathematica ly,'we have le rned to ress this linear relationsh

In the following way:

d = m(C - c) .

In this expression,' c, d, and m are constants that we can determine

from the graph.
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3.7 'EXtendlt the Temperature Domain

The doma of_our linear function has been set by,'he conditions of

,the experiment The domain we have used is the set of all temperatures e

in the interval 0<4G < 100. When we predict a pressure corresponding

to.an'arbitrar selected temperature within this inArval, the pi-ocess

ofin erpolation. If we attempt to predict a pressure that cor-
_

responds tq a tempprgture outside this interval at either end, the pro-

cess is one Of extrapolation.

This experilei*. provides us with a gdlden opportunity for extrhpol-

ation. Notice that within the domain 0 < C < 100 the pressure .diminishes

-linearly with a drop in tYie temperature. Do you supPoie it would be pos-

sIble to reduce the temperature by such a-large VaIllre that the pressure
. .

I

" would actuillY drop/ to zero? Although you have no. way of knowing4the

- proper resp6nse to, this question, we can find the 'temperature at which

the pressure would fall to zero IF the gas continues io behave in the
. ,

same manner in the.temperature'region below' 0°C; The) ,"IF" here Is a

very big one. 4

V To extrapolate graphically to lower temperaidres (that is; to e
..

the dOmain of the function), make a new plot on afresh sheet of oordinate''

paper. The temperature scale .must span an interval,of about-4 0
o
0,_...from

t 8 / o
A negative 300 C on the left to a positive 100 C on:the right. ,The vertical

-

scale of pressure must now extend upwards frbm a:pressure of 0to,the maximum

pressure previously obtaipet. Graph your original ordered airs bnthis new
. .. . , I

sheet. Now draw.a line "through" thesa,points,downwardfehd tAthe left until

it intersects the horizontai.exis. The:temperature value Of this point of .

intersection (pressure = 4,w ill rep esent the temperature of the gas that

would, presumably, reduce.thegas pr

look somethinvlikethe one -shown in

ssure to zero.. This new graph should

Figuie 8.
t

t
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' Figure 8

The "magic" temperature as determined with extreme care by research

chemists inthe-past is very near - 273 °C. If you obtained anything between

-260 and a285°C your work has been excellent: Surprisingly,,some real gases

almost behave in the manner suggested. It is almost, but not quite, leiiti-
.

mate to extend the temp6rature domain this far in these few cases. Most

gas'es liquify first, and if not, other effects come into play which make-

low-tempefeture gases behave somewhat differently than high-temperature ones.

Exercise 3

1. The tab]e below shows the speed of sound in air at various Fahrenheit
. . .

intemperatures. The absolute zero of temperature on the Fahrenheit, scale is

-4 °Fl.

xi

(a)? Draw a graph shoWing the, relation between F and speed of sound (S).

x
Temp. ( °F)
L

-30 -20 0
.

20 50
n-
ou 110

.

Speed '(ft/sec), 1030 ,1040 1060 1080 1110 1 4Q 11:70

Make, temperature values the domain and *et tie origin, represent.

"1000 on the vertical axis.

(b) Write-the equation for the relatigp between /F and S.

85
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2. The relation betweenCentigrade and.Fahrenheit temperatures is expressed

in the equation C =
9

(F - 32).

Write-the equation obtained by reversing the variables.

3. In an experiment on Gay-Lussac's Law, a student found that the pressure

ofthe gas was 7.51b/sq in at 20
e
C and 9.5 lb/sq in at 100 °C.

a (a) Graph the relation.

(b) Write the equation representing the relation between the pressure

(P) and the Centigrade temperature (t).

(c) /At wilt temperature would the pressure of the as be 8. lb/sq in?

(d) Whet would be the pressure of the gas at )50°C?

3.8 Graphical Translation of Coordinate Axes

V
A non-vertical line drawn, uRon coordinate paper always represents some

sort of linear function. The constants c, d and M in the point -slope rep-

resentation locate the line. 'A second line will be described by different

values of these constants. In other words, the fact that both lines really

are just that -- lines --,is an important consideration. Do you suppose '

that the two lines, really are the ".same" somehow? Perhap we have nothing

more than two mathematical descriptions of,a single line._ .
ou

For many purposes it is very useful to think of allai,nes that can be ,

drawn as different positions, of a single line. It istrinly the mathematical

description of he line that.differs. One point of view would be to think

of'the line as aving moved from ore position to another with resect'to the
.. P .17-

".,Qpo axes. On the hand, we may, also think of the cOordinate axes
, . . ,

havi shifted with respect to the line. .Either viewpoint is s good as

. the other, but in the discussion that follows we. will atways'consider motion

i'

of the coo dinate axes with respect to the graph of thet unction.
.

* We have, then, ,5 method forjhanging- the descriPion of a line simply/
. i

'by moving the coordinate axes witrespect..,t. that line

.

,.

,-,v ,
...,

An 8- 11 - inch sheet bf frosted acetate provides an, excellent sUi!fae

upon Allilla set of movable coordinate-Aes may. be drawn., These-,"Moving"
,

axes must carry.the same.scale as those on your coordinate paper. When this
.

.

.
. ,

plastic sheet igplaced upon a regular sheet of coordinate paper that, carries
''

frosted,,a grhph of some sort, the graph'beneath is email seen through the t
(

_acetate. In hi.'s''way the Oaph.'90nbe readily elated to the "new" coordinate
..,

ti 86I
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A

axes carried by the overlying plastic shee ese new axed may be positioned

in any manner whwtsbever.

The sheet of frosted acetate, the coordinate paper and, graph, and the

stack formed by the two are illUstrated in Figure 9(a), (b) and (c).

.Acetate sheet with axes.

(a)

1 4

\ r r
.S

t9.

Figure (c) -shows the coordinate axes X and Y.displaced upward with redi4t

to the origin of the graph beneath. The,frO$ted side of the acetate is' p,'
. ,

fbr upon this surf/ade pencil lines can be drawn which are easily erased:

MUNIMMIMAIMM
MUNIMMIMMOMM
ROMMEMDENMEM
MIMPIMMIMMIN
MOMMEMMERIMM
MENIMMOIMMIME
MMEMMINIMMEME
MEMMENEMMMUM

v
Coordinate paper and graph.

/(b) -

Graph.A.ewed in

IMMEMEMM MOM
MMEMEMEMMEMM
NM EMMINNIMM
WW-MMEW MOM
mommenummum
mullamammilmimmi

,filliliimmomm
viMmESSIMMIIMM

relation to n axes X and

(c)

Figure1.9

41.
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It must be realized that if we are to allow any kind of motion of the

coordinate axes X and Y what&ever, this motion nigh; be rather complicated.'

Matters can be simplified, however, by recognizing thatany,complex motion

may be broken into two parts. One of these parts is simple straight-line

motion, and the second is rotation. In other words, the axes X and Y may be

displaced along a line, rotated without straight-line motion, or a combination

of these two types of motion may be used. Only straight-line, or linear,

motion of these axes will be considered. This motion will keep horizontal

lines horizontal and vertical lines vertical.

There is one other important point to be made. 4ny motion of translation

onIy can be considered as made up of two translations, one in the horizontal

direction and one in the vertical.

Suppose we start with the X and Y fxes on the plastic overlay coincident

with the x and y axes on the sheet underneath. The use of the capital letters

X and Y on the overlay- will help us to remember that these represent the axes

that are moved, or "translated". When'these,axes are translated, the entire

plastic sheet moves horizontally and vertically and is not rotated. The X

axis must always remain paraliel to the original x axis, and the Y axis must

always remain parallel to the'Original y axis. It is a simple matter to

guarantee that no rotation has been involved in the motion of the axes by

maintaining the X and Y axes at. all times parallel to the ruled'lines og the

coordinate paper underneath.

Figure 9(c) suggests one of the many ways in which the coordinate axes

may be shifteL- The axes have been moved upward until the new origin is

coincident with the,o'riginal y,intercept. Using this.new position'nf the

axes, the equation of the line would now be of the formlY = mX, where before

it was of the .form y - d = m(x -,4). Ritice that the slope of a line never

changek as the axes are translated. .This is -an extremely important feature

bea lineartr.anslation -- a featiire that is not to be found when coordinate

axes are rotated.

The central idea underlyhg the concept of the translation of axes is

simply this: %t makes no.yeal difference where the coordinate axes ara placed 11

on a. sheet of coordinate paper, for they may always'be moved4to a new position

, through horizontal, notion, vertical motiV,n, or both. The placement of axes.

is a purely arbitrary matter, and in practice, they are placed in one position
0

or another strictly as a matter of convenience. A given physical situation

. %, usually suggests a-';r fWiralu;location for these axes. '

88
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' We now wish to translate the axes fOr ei'particular physical situation,

namely, that of

the imperature

is impaotant to

vertical ;Xis.

and not an axis.

the Gay-Lussac's Layexperimet. Refer to your own graphof

- mressure relatiollisimilar to that shown in Figure 8. It

realize that Figure 8 shows the horizontal axis, but not the

The vertical line at,the left side "le merely a pressure scale.

If we now wish to translate these coordinate axes, one 'cod well ask:
.

Where do we move them and why? There seem to he two logical possibilities.

We might movy the origin either to the point where the graph intersects the

(old) y-axis, or to the point where it intersects the (old) x -axis. The first

intercept corresponds to the 0°C point, while the second corresponds to the

zero pressure point. The temperatur9 can faLl belOW 0°C but the pressure

cannot fall below zero. This fact seems to make the horizontal axis intercept

(zero pressure) the more interesting of the two.

ti

44,

The desired translation of the al, then, is indicated.in Figure 10.

e.

LitiallEMINIER111110Call

SH1111111111111111Ninallitallilli

11111111M1141111111.11111110

re.CM,2;;MZZZGCCIIIII
sionsimminnissuar

X.Z0°C ..-100°C 0'C 100

,Temperature

Figure 10

In the figure, the two heavy &its represent the initial and _final position of /

the axes. x and y labelthe initial positions of the axes, and'X and Y label

the translated axes. The dashed lines indicate extent of your original

,graph.
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It,is important to realize that both coordinate axes have been shifted

here. One might be tempted to say that only the vertical axis has moved .

since the horizontal axis'remains the same. This is not true because the . .

movement oftthe horizontal axis carries with it the zero point which must

always lie at the origin. Scales are not shown along the new axes (n Figure

10, but (0,0) must lie at ,he intersection of the translated' axes X and Y.

In short, there is no such thing as translating one axis without translating

theother.

For the translated axes in this example, we.have established a new zero

for.astemperatul'e scale located atthe new origin. The zero of pressure has

remained unchanged. .The new zero of temperature is the temperature at which

the pressure in a as would also be zero. This new temperature scale is so

important in both chemistry and physics that,it is given a new.name, the

Absolute temperature scale. Zemperatures in this scale are indicated by

writing
o
K., As indicated previously, this point on the Centigrade scale

falls approximately at - 273 °C. Since the size of an Absolute degree is the

sameas the size of a Centigrade degree, we'find a simple relation between
o
C and °K, naively °C +:273 = °K.

To summarize, we have foUnd that the translation of coordinate axes may

be accomplished easily using a transparent overlay of 'frosted acetate. The

new axed may be placed--a ,here so loneas4le translated axes remain paral-
m

Lel to their original positionat all times. With the axes in any new
.

-

position, the graph may easily be interpreted with respect 5o the shifted

axes, to arrive at a new description of the grapli. This is done visually

o without fuss or bother. We see that inthis way of'doing th ings, it is only

the mathematical description of the graph that changes as the axes are trans-

lated, not*the gr-aph itself..
.

-'

Exerc9e 4 .

. A

1. Find the load-poiition graph that you drew ih the Loaded Beam experiment.

Using a sheet of ftosted acetate that carries coordinate axes X and Y,

translate the origin on the dyerlay to the y-intercept on your graph. ,

What is the equation of. your ''best" straight line with respect to the

shifted axes?

2. How could you perform the Loaded Beam experiment to obtain the equation
)

found in Exercise 1 directly?

s 4 ,1 0, I
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3. Draw the line in the first quadrant that contains the point (2,3) and
1...

, 1 t- . .

whose sloPe is .;. Use your plastic overlay to obtain the new equations
.

. .

of this line when the origin is shifted

'(a)' to the y-intercept;

(b) to the left 3 units;

(c), to the right 4units and up 3 units%

. Draw the line in the first
A

quadrant Nhich contains the points (1,7)-and
,

... (7,5). Use your plastic overlay to obtain the new equations of this"

line when the origin is shifted

(A) to the x-intercept;

(b) to the y-intercept;

(c) to the point (4,6).

.

3.9 AlgebraiC Translation of Coordinate Axes

Although the mathematical description of.a graph may be obtained easily

16-

by the' graphical procedure described in the preceding section, it is also

desirable to be able to describe a graph after the axes have been transJrated

without rbsorting.to the analysis of the graph itself.:

We will discuss linear func'tions only, and for This puupse we will use

the so-called point-slope representation'of a line.

First it will be shown that the ibint-slope representation of'a line

can be considered as one in which the coordinate axes have already been trans-

lated in both the horizontal and vertical directions.

Suppose we start with a line that runs through the origin as in Figure 11.

91 10 0
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Let us now translate the coordinate axes x and y both to the left and downward.

These shifted axes are denoted, as before, X and Y. Tiii0 translation is shown

in Figure lg.

o

000

o #

o,

MMINIMMINIMMEMM
MUUMMIMMIMMIMM
MIMMIMMINIMMENI
MMIUMOMMMEMMM
MOIMMEMMIEWRIME
mommammummis

,...mmmmmm
ammaimmismmumm
mmilimmummumm

Figure 12

0
-,. a Since the point (c,d) is a paAidular point on the line, we man now

. describe the line in the familiar point-slope form ap

Y d = m(X - c).

4

... to

0

..e



But if we now write'this same expression in slightly different form/

y + ( -d) = m[x + (-0] (1)

we may, draw a remarkable qpnclusion. Slade the quantities in -gefl'entheses

are the horizontal and vertical translakion distances, this equation tells

LW what the point-slope representation of a line is by setting the Y -coor-

dinate plus-the vertical translation equal to the slope of the line times.

the quantity) X-coordinate plus the horizontal translation. The transla-

tions involved are those that carry the origin from a point on the line

to a point off, the

Equation (1) is perfectly general, for
0
we could just as,well have

moved the origin from any point to ani other point. Consider'a second

translation of the axes as inilicated in Figure 14.
Of

,

Figure 14- '1

This time let the horiiOhtal translalton be designated h and the vertical

translation be the symbol k. *B16th of these quantities as shown in Figure 14 '

are positive. Since this is a second translation, all we have to do is add °

this
.

second horAontel translation to the first one, and add this second

'vertical translation'to the first vertical translation. Doing this gives us

-e
y +,(1.d) + k = m[X + (-c) +-h]. .(2)

: .

Notige thatflEqbation (2) is,of,ekactlithe
4

same form as Equation((1). In

- both..cdseq we have.' ,' C
-4.. I-+1,vertical translation) = (horizontal translation)].

t,. -

O " *.
.°

,,

93...:.
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In each case the translations are the total vertical and horizontalhtransla-
.

tions startingswith the origin of the coordinate axes on the line.

Equation (2) can now be used to represent the new4mathemalical.descrip-
. 4

tion of a line that results from a translation of axes from any previous

point( whatsoever. If,the original description of the line was,

Y - d = m(X - c), Equation (2) gives the new expression using the two'old

constants c and d and, .in addition, inserting two new ones h and k to rep-
,

resent the hopizontal and vertical translation distances respectively.

4
. .

,This final Equdtion (2) represents analytically the same new descrip- .
. .. t

/ion of a line that was previously obtained using graphical analysis with
or

.0 the frosted acetate sheet.
/

_

. 1.r

.. Exercise 2

1. When we extended the temperature domain for the Gay-Lussac's'Law

.
, experimento we foundAhat the graph intercepted the temperature..aXi6

.

near the (273.,0) poin't. Algebraically translate the origin of your

graph to this` intercept. Write the new equation of the line. What

are the new units of temperature, pressure, and the slope of the line?
4 0

2. Draw the line inthe first quadrant that contains the point (2,3) and
1 "

whose slops is 2. Write the equation,of this'line in point-slope
. .

form. Obtain the eqleation of this line algebraically when the origi

bas'been'translated . 4

4 (a)-"td.the y-intercept;
4:

. c._ ;

(b) to the left 3 units;

(c) to the right 4 units and up 3 units. 410*
,0

?
... ..,

Compare your results to those obtained.graphicaly in Exercise 3.of A

the previou? section.
,

3: Draw the line,in the first quadrant-which contains the points (1,7)" .
and (7,5). Write the Equation of this linein point-slOpe form.

, .

OEtain the equation of, this line algebraically when the origin has,

been translated

(a) ..to the x-intercept';

4b) to the y-intercept.

(c) to the point (4,63.

Compare yoy results to those obtained graphica in EXercisej4

of the previous section.

I

.
94*
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3.10 Summa4P'-':-,

In thi's chitpta; we considered the problem of determining the behavior

of an object bouncing on a tragpoline. An experimental trampoline -was set

' up, consisting of .a marble bouncing.on.a.balloon stretc4ed'Aver a pie pytte.

The heights- of the successive bounees.weie a function of the bounce number

and, thus, were an example of a.function defined only on the integers.

. The data which resulted from this experiment did mots exhibit a linear
.

,

, ., . .

. relationship, but we found that, the graph of the,height of a bounce plottgd

against thg.neight of the previous bounce.was linear.
. .

.\
Next, e considgred the experimental relation between the temperature

-o 0 gas aha i s pressure. This data also gave4 linear relation. We con-
. .

sidered the'pos fbility of extrapolating this linear relation to temperatures> .

'below those actu lly used dnd found that there wes a limit below which we
. . .

could not go with ut reaching negative pressures. The resulting linear re-O.
J , .

l' 4/ation cou34,bgs piffled by changing the position of the coordinate axes.

The chapter.clpsed with a discussion of the geometric and algebraic
4.

'propeities Of trans ationa.
A

.
I

e

t- . .



1' Appendix A
4

GRAPHING EXPERIMENTAL DATA

A.1 The Location of Points in ;aelane

There. are a great many instan ces where a certain place can be located

by the use of pairs of numbers. Road maps frequently are4divided intp:small

blocks by'aseries of horizontal and vertical lines (Figure 1). The vertical

rines are then designate by-the numbers.and the horizbntal'lines by letters.

A motorist can then ftcate a certain city by referring to a able which will
. ,

AIIIIINIC

1
A 11

J

a

s a

2

A

'

B

/

0 . E

Figure 1 \I

Ei 0

4- El

3 D

2

El El Ell
1 2 3 4 5

1:3

tell.him'that t city' is

approximately) at the inter-

section of - "line D" and "line

5". . Theatre tickets have the

row number and seat number

printed on them so a per

can find his seat.

A convenient wad of refer-

ring to a particular seat in a

classroom where the chairs are

located in rows is based on

assigning numbers tb each Chair:

A familiar pattern for seating

in a, classroom involves five rbws

of six chairs each (Figure 2). '

We can refer to a particular

seat by naming the row and then'

the chair number in the row.

'In our diigramyq show five °,

rows aud seats one.through six

' in each row,- .SpEitkis "row 2,

Figure 2

seat 5" while seat B is "row 5, '

seat 2". If ,we agree to -refer

to a particular seat by firsts

naming the row and then the

chair number in the row, seat A can be indicate& as seat (2,5) while seat B

- would be seat (5,2). .

Each of these pairs of numbers is ,called an orderecrnair: ,Two numbers e

are needed to locate the_particular seat,and,the order of reporting the two -

r,

97 ,
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A

numbers is. extremely important. What ordered pairs would you associate with

,points t and F in Figure 2? 9

In newspapers and magazines, as well as in textbooks, a graph of the

type shown in Figure 3 is often used to present data.

In collecting the data

for this graph you would have

to use pairs of numbers, one

number for the row, and one

for the,riuMber of protractors

needed. If we agree to state

these two numbers in a cer-

tain order, such as (row num-

ber, number of protractors)

we'can represent our data as -

a set of ordered pairs; ((1,4),

(2,3), (3,6), -0,2), (5,5)).

This notation Using braces

) is formal -mathematics

notation for a set of ordered

pairs. 'You probably would not

.6

Number of Protractors
Needed in Class

2 3,

* Row Number

Figure 1

record the information --in this manner, however. Most likely you would siimply

&table like_the_one shown below..

Row Numbers 11 2 3 4 5

Number of
Protractors

4

..4

3 , 6 2,
s 5

In either case you have collected dada and recorded it as ordered pairs.

A bar'graph, such as that shown in Figure 3 is very useful for presen-

ting numerical information

in a clear'and compact way,
,

but the "bars" In this

. graph are not really nec=

'essary. We could just as

well use dots on a sheet

of graph paper to repre-,

sent our ordered pairs.

(Figure 4.)

6
-0
4., 5
03

4

sc.Vg
a. rig 3

4-1
o 2

a) 1

5 0z 0 1 2 3 4

Row Number

Figure 4



Scientists:,often Make-a graph of the observations obtained through excer-

imentation.., In the first chapter you were asked to complete the following

table (giercise 1)-f8r a seesaw experiment. All of the data is given in this

table%

.1. 4,

. ,

Mass ) 12 2 8 r'el 16 6 3

Distance A . 4 24 6 2 3 8 16

Another, wayrof listing this data-'is in set notation: ((12,4), (2;24),

(8,6), (*,2), (16,3), (6;8), (3,16)). This set of ordered pairs can be

graphed_ in the same way as the previous example. We again use a piecc.pf

graph phper ar-d begin with two perpendicular lines called axes. We.can

label the horizontdi axis "mass in gramg"pand the vertical axis -"distanqe

in cm".

25

20

15

/

5

.

,

I I

.

f

.

I,
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;
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v
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.

k

ta,

,
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'

,

c
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.
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5 '10 15

Mass in Grams

Figure 5
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A.2 -Coordinates
B

C

---11 A

E

Figure 6

As we have seen, a set of ordered pairs of numbers can be represented by.

a graph. Each point on the graph represents one member of the set of ordered

pairs. For example, point A in Figure 5 could be represented by either the

pair (2,4) or the pair (4,2). you have probably noted, we needed to make

same decision as to the meaning of each member of the pair. The-individual

numbers of the.ordired pair are called the coordinates of the point. The

Memherof the drdered pair which indicates how far to the right of the zero

point the point is located is called the horizontal coordinate of the point.

The member of the ordered pair which indicates how far above the horizontal

axis.the point is located is called the vertical coordinate of the point.

It is common practice in preparing graphs, to arrange ordered pairs so

that the first member of the pair represents the horizontal coordinate and
.

the second member represents the vertical coordinate.' Using this convention,

pointAin Figure 6 will 'have as its coordinates the orkred pair (2,4)

ralher,than (4,2). Point B s described by the ordered-pair (1,7). Can you

write the coordinates ofpoints CD and E?'

i4

100

4

14.



EXercise 1

1. Write the ordered pairs )of numbers which are associated with the points

A thrbUgh F in the figure below.

., 9

8 E

4 7 I,

A . D .

I

0

5

4
I.

3

2 B F

C

e,

0 1 2 3 6 7 8 10 11 12

2!)`' Graph, the following sets of ordered 14irsienthe same sheet of graph

paper.

(a) (0,0, (14, (2,2), (3,3), (4,4), (5,5))

(b) ((0,0), (1,2), (2,4), (3,6), (4,8), (5,10))

(c) ((0,0), (1,3), (246)1`'(3,9); (4,12), (5,15))

(d) ((0,0), (1,-), (2,1)z 0,4))

(0,0), (171), (2,4)s/(30), (4,16), (5,25)) ti

3. Make aset of atpleast five ordered pairs to,satisfy the following-,

conditions.

(a)

I

(c)

, .. -,' i
The ordered pairs for which the vertical coordinate is 6 times

the horizontal coordinate.. , q,

The order2d pairs for which the vertical coordinate is 3 times
. .

the horizontal coordinate.7,, , .,
.

The ordered pairs for which the vertical coordinate, is 2 mare

than twice the horizontal coordinate.
. f

(d) ''he ordered pairs for which the Vertical, coordinate is
,

the
.

square root of the horizontal coordinpte. N

The ordered pairs for which the vertical coordinate is the ,

le.''
cube of the hOrizontal coordinate.

-4e
.. 101

.. . ,

109

'1

4.



4. Make a.graph of the data recorded in each.of'the tables below. Zn each

case, the top row indicates.the horizontal coordinatesfand the bottom

row the vertical cci>ordinE&s. Be sure to label the axes correctly

(refer to Figure in text).

r-^

(a)

. (b)

Time (sec),
/

0
1
.-2- 1

1
1-
2

.2

Speed (meters/sec) 0
- 1

2
2

1
4-
2

.

8 18.

Diaance of object (cm) 30 15 10 6 5 3 2 1

Distance of, image (cm) 1 2 3 5 6 104011.5 .30

Weight in oz
1

2
2 1

2-
2

1
32

'

Cost in Cents 5 5 5 ' 10 10 15 15 20

ti

4
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B.1- Bases and Exponents

`Appendix B

SCIENTIFIC NOATION

4

V

Many of the measurements in the physical sciences yield numbers which N

are either extremely large or, extremely small. For example, the speed of

light is approximately 300,000,000 mete,rs per second, and the radius of the

helium atom nucleus is approximately 0.00000000000024 cm.' Some method of

writing such numbers is needed which.will make it relatively easyto,eompare

and work with these numbers. To introduce-ouch a systeiit is important

that we first develop the necessary concepts and symbols..

The number 625 can be represented as the product of fodr fives, that is

`625 =,.5x5x 5 x..5 .

0
f

It'is often cojlvenient to think of 625 as "four fives multiplied together",

but this type of notation is somewhat inconvenient because it istso lengthy.

You probably already know that 3 x 3-can be written as 3
2

(three squared).

The "3"'indicates that we are

that we are going to multiply

a product such as 5 x 5 x 5 `x

we

to

going to multiply 3's together, and ttie "

two of them.. If we exier4 this notation t
.

5 we can write it as 54. The "5" means that

going

powers.,

IT

I 4

are going to multiply 5's together, and the'"4"

multiply four of them. Numbers written in this

For example, 5 is the fourth power of five.

and 105 ,c'cube of 9, means 9 x 9-x 9,

10 x 16x,"101K x 10.

4
, In an expression like 5 ,

case, "5") is called the base;

gdIng to multifly is called an

`exponent is "3,". HoW can you write the'expression 2 x 2 x 2 X 2 X 2 using
7--- - , .

.

onents?
)

What is the base?. Whit is the exponent? HoW would you read

such a number? it

*

The number 288 can brl written as 2 x? x 2 X 2 X 21K 3 x 3. Using the
. .

associative properly of multiplication,

288 = (2 X 2 x 2 X2 x...2) x (3 x

or in exponent form .. ...-

28g =25fx 32

This expression would be read as "two to the fifth power times three squared".*

the fi

In a

means that we are

manner are 'called

si lar manner 93 , the -

of 10, means

-

the number which is to be multiplied (in this

.,the "4" which indicated how many 5's. we are

exponent. n;§3 'hiI e.-base is "9" and the

4
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Exercise

1. For each of the following, indicate 'the base and the exponent.

11(a) 63 (d) 2

(b) 105 (e) x2

(c) 58- (f) x5

2. Using exponents, write each of the following in briefer form.

.(a) 3x- 3 -x3x3
(b) 1.Ox10x1.0
(c) 3x 3x 3x 5 x 5

5.y.3 x 2 x 2 x 3 x 5
(e).-1.25 x'10 x 10 x 10

3. What is the value of each of the following? .
(a) 34 (e) 106

.

(b) 23
(f)

32 + 2 3
'

(a) 92 (g) 33 + 22

(d) 54

In problemS 4 - 7, tell which statements are true and which are false.

&dimple:

3 32 + 3,

23 ±33 = (2 2x 2) + (3 x 3 x 3) a

= 8 + 27

= 35 ,

53 = 5 X 5 X 5

' = 125

35 is not equal to 45, hence the equation is falie.

4. .23 x,33 = 4;11

5. 23x23 = 26-

6. 3 x 33 = 93 A.

7. 2
5 - 23

2
2

I

4

101

4
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B.2 Powers of Ten

Our decimal system of writing numerals is based on the number ten.

Starting at the units place, each plane 10 the left has_a value ten times

as large as the place to the right.

Hundred thousands Ten thousands Thousands Hundreds° Tens Unit's

10X1040x10x10 10X10x10X10 10X10X10_ 10X10 10 , 1

These numbers can be written using exponents:

100,000 = 10 x 10 X 10 X 10 x 10 = 105

10;000 = 10 x 10 x 10 X 10 = 10
4

1,000 1= 10 x 10 x 10 = 10
3

100-= 10 x 10 =102

10 = 10 = 10
1

In the above -table each succeeding number is 15 of the previous number, and

thus each exPonent'is pne less than'the previous one. In order to complete

the table the next number should be 1 and the next exponential form should

be 10°.
, .

This pattern repeats itself for powers Other than powers of ten.
.

Powers of two

16 =
,

2 x 2 X 2 x 2 = 2
4

8= 2 X 2 X 2 '' = 23

4 = k,2 x,2 = 22

2 = , . 2 =21

Eich number is 1
.f

of the previous

numbei.

Powers of three

o
01 = 3 x 3 x 3 x 3 = 3-

4

27.:= 3 x 3-x 3 =33

9 . 3 x 3 = 32

3 = 3 =31

1
Each number is -

3
of the previous

number.-

*
Powers of four.

,
25o = x 4 x 4 x 4 = 4

4

64= 4 x 4 x 4 =43%

16 = 4 X 4 . 42

4= . 4 =41

Each 'lumber is :

of the previous

- number.

In each case the next number will be 1, and the next exponential form,

will be the common base with a zero exponent.

20
= 1 3

0
= 1

m this we can make the following definition:

For every number_B not equal to zero
0

-B
0

= 1 .

4
0=1

'Tv

The expression 00 tp..-ca ll4d.an *determinant form and has no meaning.

105
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B.3 Negative cponents

which are lekss
1

in terms of powea-

4
-

than one,n

of ten.
40

We clan also use exponents to express numbers

In particular, we can express decimal fractions

1 1

.1 la lol
1 1

1 1

.001 1000 103

etc.

In order to simplify these expressions we are forced to make another _

definition. In mathematics we usually write a fraction which has some power

of a number in the denominafor in terms of a "negative" exponent.

/
= B

-n
(B not equal to zero)

B

1In this way
1
-- becomes 10

-3, 7 is 10-4
, etc. Zero with al4negative

103 lO

exponent implies.division ay zero which is not defined.

In a rater course, when you study the varioukoperations which can,be

performed with exponents, you will learn how these definitions 'have come

about.

B.4 Scientific Notation

ScientistS hive used the e of notation introduced in the previous

sections to develop a method of iting extremely large or expremely small

nuMbers. This,mepod is called scientific notation, and allows us to expredt

numbers as the product of a number between one and ten and some poWer of ten.

If you think back to the relation between multiplying or dividing by ten and

use your knowledge of the declual system, you will be able to see,how the

product of some integral power of. ten with a number betwed4 one and ten can'

be used to represent any number.

1.3 x,10 =.12,3 =41.23 x-101

1.23 x 10 x 10 =, 123 = 1.23'X 102

1.23 x 10 x 10 x 10 = 1230 = 1.23 x 10
3

1.
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_Vow try the following,problems:°

1.23 x
10

= .123 = 1.23 x 10
-1

A. 1.23 x = .0123 =,1.23 x 10
-2

100

1.23 X 1(75 = .0013 = 1.23 x 10 -3

These examples and problems lead us to the following general rule.

Let a number be given in debimal form, and suppose we wish to

multiply this number by some power of 10. To do this we merely need

to move'the decimal point the same number of places as the exponent

of 10, to the right for positive exponents, and to the left for neg-

ative,exponents.

We can use What,we have just learned to simplify measurements such as

,those mentioned in Section B.1 . For. example, the speed of light is approx-

imately 300,000,000 meters per second. This can be written as

3 X100,000,000 meters per second

or, using exponents,

3 x 10
8
meters per second .

The radius of the nucleus of the helium atom is approximately

0.00000000000024 cm

which can be:written as 8

2.4 x .0000000000001 cm

which equals

2.4 X 10-13cm
s?`

This type of operation is called expressing measuremehts *n scientific
t

notationt Here are some examples. Notice that in each ease the measurements

are expressed as some number between one and ten multiplied by some power of

ten. Notice also that when you write a number in scientific notation, the

exponent of ten will be positive if_dthe number, is larger than ten, or negative

'if the number is smaller than one. The site)Of the exponent is the number of

places the decimal point must be moved to bring it directly after the first

nonzero digit. t

?

2540 mm = 2.540 x 1000 mm = 2.540 x 1V,'mm

93,000,000 miles = 9.3 x 10,000,000 miles = 9.3 x 107 miles

0.0683 meters = 6.83 x 0.01 meters .= 6.83 x l072 meters.;

00000821,5 inches = 8.215 X 0.00001 inches = 8.215 X 10-5 inches

I
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EXample.1: Write 978.23 in scientific notation.

To change the number 978.23 to 9.7823,(a number between one and, ten)

.he 'decimal place Must be moved two plaCes to the left. To restore

'9,7823:to the original form would require moving the decimal point two

places to ;the' right. We have found that this can be done by multiplying ,

by 102.. Therefore we canmakethe statement:,.

.978.23 = 9.7823 X 104'.
a

...Example 2: Wx.ite 0.0934 in scientific notation.
.

To change 0.0034 to 3.4 (a.number between one and ten) the decimal
.

point must be moved threleplaces to the right. To change 3.4 to its

original form would require moving the decimal pointothree J.olaAs to

the left. We have found that that can be done by multiplying by 10-3.

Therefore

0.0031: = 3.4 x%10-3

S.,

e Exercise 2
. .. -

1,:, Perform the indicated multiplications mentally dnd write your answers.
,

,
Example: 26.3 x 10

-2
=..2oa

(a) 259.4 x 10-4. =

(b) 3.258 x 102 =

(c) .023.X 103

(d) 35.62 x 10-1 =

(e) 358.2 x 10-3 =

ok"
2. Express these measurements in scien 'fic notation.

. .;

-(a) There are more than 4,500,000 red corpuscles per cubic mm of blood.

(b) and (c) If a given sample of material contains 2,000,000 atoms of

U238 in 1964, this same sample will contain 250,000 atoms of U238

in the year 13,500,001,964. (Write the numbers, of atoms in scien-,:'

tific notation.)

(d) The normal concentration of glucose in the human cell is .0007

(e) The distance to the sun ip 150,000,000 km

-4

(g) .0031 x 105 =

(h) 29.35 x 10-2 =

(i) 3.05 X 106 .=

(J) 3.05 x 106 =

108



Appendix C

METRIC' SYSTEM

C.1 Metric Prefixes

,The definition of measurement states that it is a process in whUh the

object or event to be measured is compared to the standard unit for the object
4

or event. The process of measurement of physical quantities begins with the

establishment of ,three primary standards, one for length, ode for mass, and

one for time. No different observers-will obtain the same result only if

they have agreed to use the standards. Since length, mass, laud time cannot

be defined, the measurement process for such quantities must be established

la agreement. Certain fundamental Units have been established by custom,,

by national legi4ation, and by international agl'eement..

As.

The most widely used system throughout the world is the metric system.

Except for the'English-speaking countries, this is the system which is in

general use in all major countries. It is also the system used for scien-
,

tific work in all countries.

The metric system consists of a set of basic units originally established

by the French. Academy of Science after the French Revolution. This System

is a decimal system and certain prefixes are used with the basic units to

give new units. The prefixes are based on powers of ten as shown in the

table below.

Prefix Symbol Value

micro = ( M ) = one millionth = 2.000001 = 10
-6

`Milli

centi

=

=

( m )

( c )
= one thousandth

t,
= one hundredth'

=

=

0.001
,

0.01

=

=

10-3

10,

-1
deci = ( d ) = one tenth = V.3. = lo

BASIC UNIT = = one = 1 = 10
0

deka = ( dk) = ten ='10 =, 10
1

hecto = ( h ) 1 one hundred
.0.,

= 100 J . = 102

kilo = ( k ) -= one thousand = 1000 = 10
3

mega = ( M ) = One million = 1,000,000 = 10
6

109
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The basic Units used with these prefixes are

. meter length:

gram - mass'

s ecohd - time -
144

Some examples of the various combinations are shown below.

2 kilometer. km) equals 100 meters.

1
1 milligram (mg)' equals ic,---,700 gram.

1 -. ,i
1 centimeter (cm) equals. Tao-meter. t ,, ..

1 hectogram (h equals 100 grams.:
.

). . .

Not 11 of the possible combinations are -actually,used.' A scientist

woVid have little use for a unit such as a hectosdcond. The table below lists
..

1

sane of the comb

.,. Length Mass Tim%,,,,

,

micron

millimeter

centimeter

meter
.

kilometer'

.

microgram

milligram

.

van), ''0

kilogram

microsecond

millisecond

second

Notice the first eery in this table. Instead of micrometer, 'we write

micron. The special name is used because this unit is in very commun use in

certain fields and a shorter term is validble. The word micrometer is also

used for another purpose. (Do ydu know what? If not, look it up.)'

The following examples will introduce you to the .process of conversion.

. , These prefixes are also *sed with other units, Such as kilovolts and

microfarads in electricity. Have you ever heara'of a megaton? In the English

system ounits we have various units of vplume, cubic feet; quarts"(both dry

and liquid), etc. In the metric systeM the unit of e is the.liter. The

liter is approximately equal to,1000 cubic entimeters ctual liter equals

1000.028-cubic centimeters). The prefixes are used with this

units such as milliliter, deciliter, etc.

new

4:7

C.2,. Conversion 'of Units W /

There ar many times when it is necessary or convenient to_chaw.11-147
...

one basic Unit of measure to another of the same nature, suchas from centi-

imetors to.meters. The process of changing from one unit to another'without

actlially*goihg through the process of measuring with the new unit is called

110 4
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"conversion of units". Since, by definition

we can also say that

In a similar way

1 meter = 10 decimeters =,100 centimeters .'1000 millimeters.

mm
ioFo .mi

1000 mm = 1 m.
V

With a little manipulation with numbers we can arrive, at the following:

/

Length 1Mass Volume ,

10 mm = 1 cm

'10 CM a 1 dm

10 dm . 1 m

.

1000- m = 1 km

etc.

10 mg = 1 cg

10 Cg = 1 dg

10 dg = 1 g

Soj r;

1000 g = 1 kg

etc.

10 ml = 1 cl

- 10 cl = 1 dl

10 dl = 1 liter
, .

etc.

, t

Example 1:

Suppose, for example, we have a measurement of 1253 mm. To express

this meas:rement incentimeters, we note that

-. 10 mm = 1 cm (1)

or, 1 mm = j5 cnik (2)
, .

. . .

The expression 1253 mm can be thought of ,as 1253 millimeter units, or

4 --

a- 12f3 (10mn) , (3)

The ccmr,TersiT,to centimeters car} be made by referring-4(2) and,re-
t 1
placing the (1 mm) with its equivalent,

10
dm/.

,

Thus

1253 mm = 125,3(15 cm) = 125.3 cm .

111.
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In a similar'way, we could find'the decimeter measure and the meter

Me9aure of this meakurement. We begin with the fundamental relation be-
,

tween the units 4y

1 m 10 dm = 100 cm -v 1000 mm

and rearrange it so that

1 mm =
1

cm =
1

dm
1

m
10 100 1000

Then the measurement becomeq
, -

1253 mm = 125.3 cm = 12.53 dm = 1.253 m .

Notice that the four measures are related to each other. One measure
,

can be obtained from the other by multiplying or dividing by somelmultiple

of ten. The measures differ only in the position o1 the deciMal point.

Example. 2:

°
Change 23:7 grams into decigrams, centigrams and milligrams.

-

23.7 gm,=23.7 (10 decigrams) = 237 decigrams'

23.7 gm &.23.7(100 centigrams) =1/4 2370 centigrams
.,

23.7 gm = 23.7(1000milligrams) = 23700 milligrams

0

.
Example 3:

%Change 50 11.1,1. to Miters.

50 ml = 50 (.,=1.- liter) ,= .050 liter

EXerOise 1
Ob,,

1. 100 m =' dm = ' cm .
.

2. 31.2 mg d g=
. .

3. 281 liters = m1 .

4. 1285 cm = II m .

5.

*

0.155 gm =

6.

-V_
Change 500 milowatts to watts.

7. Change )900 deciliters to liters.
't,

.N

112



- .

8. The frequency of radio station WICH is 1340 kilocycles. Express the

frequency in cycles.

Change 55 minutes to microseconds.

C.3 English System of Units

The fact that we use'inches, poundsy quarts, etc., in our everyday

measurements and the metric system in scientific work means that we will

have to learn how to make conversions'between these two,systems.
- ,

Although it is not well known, the United States adopted (in 1891) the

International Meter, and International Kilogram as fundamental standards.

Our customary units, the yard end the pound are defined in terms of these_

standards.

The table below lists some of the commonly used equivalents between- -

the 'two systems. These values have been rounded off to a convenient number

of-places.

1 meter is approximately the same as a length of 39.37 inches.

1,inch is exactly the same as a'le.ngth of 2.54 centimeters.

1 pound is'appioximately the bane as the weight of 454:grams.

1 liter is approximately the same as 1.06 liquid quarts.
0 .

f

Example 1:

Change 26-meters to feet.

.20 meters = 20 (1 meter) = 20 (39.37 inches)

= 78.74 inches c .

(.

and since

12 inches = 1 ft , or 1 inch = 1 ft
1

12
38.74 inches 2 78.74 (11. ft)

= 6.56 ft .

Example 2:

What mass in kilograms would weigh 3 pounds?

3 pounds = 3 (454 gram's)

= 1362 grams

-which, of course, is equal to

1.362 kg

113i
s.
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1. 3 ft = cm .

Exereise42

2. 114 liteis = qts = gal .

3. 27 meters = yards = et .

44, 428 ml = ',' cubic centimeters.

5 6.5 ft = cm 7 m .

6. What mass in grams would weigh 1.5 pounds?
t

7 - Wha, t is the weight (in pounds) of a 7 kilogram mass?-

8. Vhiuige 1 quart to'liteis.

9. .Change 1 yard to meters.

10. What is the weight (in pounds) of a 1 kilogrgm mass?

.V

Adm

4
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GLOSSARY

Pait II

ANALYTICALLY A result is obtained analytically when it is.obtained by

computation (as opposed tor'experimentation).

ASSOCIATIVE PROPERTY. OF MULTIPLICATION -- When three numbers are to be

multiplied 4n a stated, order, the product is independent of the

grouping. That is,

a x (b x c) (a x b) X c

BASE -- When-a numeralis'given in exponential form, the number which is to

be multiplied by itself is called the base. That is, 3
4
means

3x3x3x3 and 3 is the base.

CLOSED PHRASE -- A closed phrase is a phrase which represents a, specific

number.

COINCIDENT -- Identical; having all points in common.

COORDINATE AXES Intersecting lines used to locate points in the plane

by means of coordinates measured along the lines.

COORDINATES ON A PLANE -- The numbers associated, as at ordered pail, with

a point of the plane are called the coordinates of the point.

Dt.kLECTION -- The amount of bend (as indicated by a pointer relative to

a fixed scale).

DISPLACE -- When a directed movement of 'a coordinate axis is made, we

say that the axistis displaced.

DISTRIBUTIVE PROPERTY -- If,

true that a x_ (b + c),=

elements of the system,

distributive property.

cation over addition.

in a given mathematical system, it is always

(a x b) + (a x c), where a, b andc'are any

thep we say thEit the given system has the

This is the distributive property of multipli-

DONATN -- The domain is the set of first ellen:lents of the ordered pairs in .

a relation or function.

ELEMENT -- A member of a set.

EQUATION -- An open sentence involving equality:'
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or,

EXPONENT -- The particular use of a numeral to indicate how many times a

certain number should be used as a factor. The expression 3
4
means

3 X 3 X 3 X 3 and the 4 is the exponent..

EXTRAPOLATION -- TO calculate values outside an interval from values within

the interval.
so

FACTOR -- One of the numerals in an indicated product is a factor of the

product.

FORCE -- Force is a physical-conCept which can be 'described loosely as

the push or pull on an object.

FUICEUM -- The point of support of a seesaw.
a .

FUNCTION -- A function is a set of ordered pairs such that each element

r of the domain appears in" one and only one ordered ,pair.

GRAPHICAL ANALYSIS --.To reach a conclusion by the use of graphs.

HYPOTHESIS-- In mathematics, an assumed proposition used as a premiie

in proving something else.

In science, a proposition held to be probably true bectube its

consequences are found to be true.
.4-

INEQUALITY -- Any statement which indicates that one number or quantity

is not equal to another is called an inequality.

INTEGERS- -- The set of counting numbers, zero, and the additive inverses

of the counting numbers make up the set of'integers.

INTERCEPT -- The Point on a number line at which a second line meets it.

INTERP0fATION -- TO find an intermediate value between two given values.

LINEAR -- Pertaining to straight lines.

MASS -- Mass is a fundamental property of a body. It is not the same as

the weight of the body. Oft the earth's surface, the weight of an

object is pibportional to its mass.

MATHEMATICAL MODEL"-- A mathematical relation which represents the phys-

ical model. In most situations it will be an equation.

MAXIMUM VALUE -- The greatest value. . 4

MEASUREMENT -,- Any measurement is a process in which the object or event

being measured is compared to the standard units for that object or

'event.
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MULTIPLICATIVE.INVERSE -- For every number, except 'zero, there is another

number (called its multiplicative inverse) such that the product of,the

3

1
two numbers is one. For example1 is the multiplicative inverse of

3 since 3 x . 1 .

NEGATIVE REAL NUMBERS --. The set of rea], numbers associated with points to

the left of zero on the numPer line (where the unit point is to the-%

right of zena)is the set of negative real numbers.

NON-INTEGRAL_.- The property of not being on integer or not pertaining

to an integer.

NUMBER PHRASE -- A number phrase is a name for a number.

An expression thgt represents a number.

NUMBER SENTENCE -- A statLent'about numbers and quantities.

NUMERICAL PHRASE .--- A numericaL phrase is any numeral given by,an expression

involving other-numerals and signs of operation. ,

NUNERICALs$ENTENCE -- A sentence which makes a statement about numbers.

OPEN PHRASE -- An open phrase is a phrase which does not represent a

specific number

OPEN SENTENCE -- A Mathematical sentence which contains one or more ',tar-

iables.

ORDERED.PAIR -- A set containing exactly two elements, (a,b)', in Which one

element is recognized as the first element.

PHYSICAL MODEL A. single curve on a graph of the set of points which

best represents a collection of data.

behavior of a physical system..

It is an idealization of the

POSITIVE HEAL NUMBERS -- The set of real numbers greater than zero. Usu-
-

ally represented by,the points to the right of zero on the number line.

POWER -- an j.s called a power of "a". More precisely, a
n

is the nth power

of "a"

QUADRANT -- One of the four regions into which the coordinate axes divide

the coordinate plane.

RANGE -- The range is the set of second elements of the ordered pairs in

a relation or function.

-
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REAL-NUMBERS -- -The set of all numbers associated with points on the number

line. A number which can be represented by a finite or infinite dec-

imal

The-IMatiplicativeinverse of a real number is called the

reciprocal of the number.

The reciprocal of a real number' a (a / 0) is the

no reciprocal.

number

RELATION -- A relation is a set of ordered pairs. When the pair (x,y) is

in the set and we use R to represent the relation, we say that x R y

1
a-

is true.

RESISTANCE The opposition to motion of A body by its surroundings.

SCALE -- In graphical representations the scale refers to the ratio in

which the mapping represents the real situation.

SCIENTIFIC NOTATION -- The practice followed in mathematics and science

of writing numbers as a number between one and ten multiplied by the

appropriate pow qr of to . For example,

it! 2
16 = 2.16 x 10-

0.0043.. 4.3 x 10-3

SLOP -- The slope measures the steepness of the inclination of a line.

It is the ratio of the rise to the, rim.

SOLUTION SET -- The set of elements in the domain of an open sentence

which make the sentence true is Called the solution set of the open

sentence. Also called the truth set of theMpen sentence.

SUBSCRIPT .:-. A small letter or numeral written at the lower right of a

symbol to distinguish it from other symbols of the same kind.

TERMINAL VELOCITY -- When the upward resistive force ecfuals the downward

gravitational pull on the object, terminal velocity has.been reached, "

TRANSLATION OF AXE -- Changing the Coordinates of a set of points to coor-
;-.

dinates referring to a new set of axes parallel to the original axes.

TRIM SET -- The solution set of an open sentence is also called the truth

set of that sentence.

See solution set.

VARIABLE A symbol which can be replaced by any member of a given set.

-4 118
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VELOCITY (CONSTANT) -- The slopecf the line op a time-distance plot. It

is given by
distance
time

,

VERB PHRASE -- The phrase that states the relationship involved between
.-
word phrases.

WORD PHRASE -- AMathematical phrase in word form.

4
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